mirrored from https://projects.blender.org/blender/blender-addons.git
-
Notifications
You must be signed in to change notification settings - Fork 189
/
io_export_paper_model.py
2519 lines (2222 loc) · 117 KB
/
io_export_paper_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: `Adam Dominec <[email protected]>`
#
# SPDX-License-Identifier: GPL-2.0-or-later
## Code structure
# This file consists of several components, in this order:
# * Unfolding and baking
# * Export (SVG or PDF)
# * User interface
# During the unfold process, the mesh is mirrored into a 2D structure: UVFace, UVEdge, UVVertex.
bl_info = {
"name": "Export Paper Model",
"author": "Addam Dominec",
"version": (1, 2),
"blender": (3, 0, 0),
"location": "File > Export > Paper Model",
"warning": "",
"description": "Export printable net of the active mesh",
"doc_url": "{BLENDER_MANUAL_URL}/addons/import_export/paper_model.html",
"category": "Import-Export",
}
# Task: split into four files (SVG and PDF separately)
# * does any portion of baking belong into the export module?
# * sketch out the code for GCODE and two-sided export
# TODO:
# QuickSweepline is very much broken -- it throws GeometryError for all nets > ~15 faces
# rotate islands to minimize area -- and change that only if necessary to fill the page size
# check conflicts in island naming and either:
# * append a number to the conflicting names or
# * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals)
import bpy
import bl_operators
import bmesh
import mathutils as M
from re import compile as re_compile
from itertools import chain, repeat, product, combinations
from math import pi, ceil, asin, atan2
import os.path as os_path
default_priority_effect = {
'CONVEX': 0.5,
'CONCAVE': 1,
'LENGTH': -0.05
}
global_paper_sizes = [
('USER', "User defined", "User defined paper size"),
('A4', "A4", "International standard paper size"),
('A3', "A3", "International standard paper size"),
('US_LETTER', "Letter", "North American paper size"),
('US_LEGAL', "Legal", "North American paper size")
]
def first_letters(text):
"""Iterator over the first letter of each word"""
for match in first_letters.pattern.finditer(text):
yield text[match.start()]
first_letters.pattern = re_compile(r"((?<!\w)\w)|\d")
def is_upsidedown_wrong(name):
"""Tell if the string would get a different meaning if written upside down"""
chars = set(name)
mistakable = set("69NZMWpbqd")
rotatable = set("80oOxXIl").union(mistakable)
return chars.issubset(rotatable) and not chars.isdisjoint(mistakable)
def pairs(sequence):
"""Generate consecutive pairs throughout the given sequence; at last, it gives elements last, first."""
i = iter(sequence)
previous = first = next(i)
for this in i:
yield previous, this
previous = this
yield this, first
def fitting_matrix(v1, v2):
"""Get a matrix that rotates v1 to the same direction as v2"""
return (1 / v1.length_squared) * M.Matrix((
(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y),
(v1.x*v2.y - v1.y*v2.x, v1.x*v2.x + v1.y*v2.y)))
def z_up_matrix(n):
"""Get a rotation matrix that aligns given vector upwards."""
b = n.xy.length
s = n.length
if b > 0:
return M.Matrix((
(n.x*n.z/(b*s), n.y*n.z/(b*s), -b/s),
(-n.y/b, n.x/b, 0),
(0, 0, 0)
))
else:
# no need for rotation
return M.Matrix((
(1, 0, 0),
(0, (-1 if n.z < 0 else 1), 0),
(0, 0, 0)
))
def cage_fit(points, aspect):
"""Find rotation for a minimum bounding box with a given aspect ratio
returns a tuple: rotation angle, box height"""
def guesses(polygon):
"""Yield all tentative extrema of the bounding box height wrt. polygon rotation"""
for a, b in pairs(polygon):
if a == b:
continue
direction = (b - a).normalized()
sinx, cosx = -direction.y, direction.x
rot = M.Matrix(((cosx, -sinx), (sinx, cosx)))
rot_polygon = [rot @ p for p in polygon]
left, right = [fn(rot_polygon, key=lambda p: p.to_tuple()) for fn in (min, max)]
bottom, top = [fn(rot_polygon, key=lambda p: p.yx.to_tuple()) for fn in (min, max)]
horz, vert = right - left, top - bottom
# solve (rot * a).y == (rot * b).y
yield max(aspect * horz.x, vert.y), sinx, cosx
# solve (rot * a).x == (rot * b).x
yield max(horz.x, aspect * vert.y), -cosx, sinx
# solve aspect * (rot * (right - left)).x == (rot * (top - bottom)).y
# using substitution t = tan(rot / 2)
q = aspect * horz.x - vert.y
r = vert.x + aspect * horz.y
t = ((r**2 + q**2)**0.5 - r) / q if q != 0 else 0
t = -1 / t if abs(t) > 1 else t # pick the positive solution
siny, cosy = 2 * t / (1 + t**2), (1 - t**2) / (1 + t**2)
rot = M.Matrix(((cosy, -siny), (siny, cosy)))
for p in rot_polygon:
p[:] = rot @ p # note: this also modifies left, right, bottom, top
if left.x < right.x and bottom.y < top.y and all(left.x <= p.x <= right.x and bottom.y <= p.y <= top.y for p in rot_polygon):
yield max(aspect * (right - left).x, (top - bottom).y), sinx*cosy + cosx*siny, cosx*cosy - sinx*siny
polygon = [points[i] for i in M.geometry.convex_hull_2d(points)]
height, sinx, cosx = min(guesses(polygon))
return atan2(sinx, cosx), height
def create_blank_image(image_name, dimensions, alpha=1):
"""Create a new image and assign white color to all its pixels"""
image_name = image_name[:64]
width, height = int(dimensions.x), int(dimensions.y)
image = bpy.data.images.new(image_name, width, height, alpha=True)
if image.users > 0:
raise UnfoldError(
"There is something wrong with the material of the model. "
"Please report this on the BlenderArtists forum. Export failed.")
image.pixels = [1, 1, 1, alpha] * (width * height)
image.file_format = 'PNG'
return image
def store_rna_properties(*datablocks):
return [{prop.identifier: getattr(data, prop.identifier) for prop in data.rna_type.properties if not prop.is_readonly} for data in datablocks]
def apply_rna_properties(memory, *datablocks):
for recall, data in zip(memory, datablocks):
for key, value in recall.items():
setattr(data, key, value)
class UnfoldError(ValueError):
def mesh_select(self):
if len(self.args) > 1:
elems, bm = self.args[1:3]
bpy.context.tool_settings.mesh_select_mode = [bool(elems[key]) for key in ("verts", "edges", "faces")]
for elem in chain(bm.verts, bm.edges, bm.faces):
elem.select = False
for elem in chain(*elems.values()):
elem.select_set(True)
bmesh.update_edit_mesh(bpy.context.object.data, loop_triangles=False, destructive=False)
class Unfolder:
def __init__(self, ob):
self.do_create_uvmap = False
bm = bmesh.from_edit_mesh(ob.data)
self.mesh = Mesh(bm, ob.matrix_world)
self.mesh.check_correct()
def __del__(self):
if not self.do_create_uvmap:
self.mesh.delete_uvmap()
def prepare(self, cage_size=None, priority_effect=default_priority_effect, scale=1, limit_by_page=False):
"""Create the islands of the net"""
self.mesh.generate_cuts(cage_size / scale if limit_by_page and cage_size else None, priority_effect)
self.mesh.finalize_islands(cage_size or M.Vector((1, 1)))
self.mesh.enumerate_islands()
self.mesh.save_uv()
def copy_island_names(self, island_list):
"""Copy island label and abbreviation from the best matching island in the list"""
orig_islands = [{face.id for face in item.faces} for item in island_list]
matching = list()
for i, island in enumerate(self.mesh.islands):
islfaces = {face.index for face in island.faces}
matching.extend((len(islfaces.intersection(item)), i, j) for j, item in enumerate(orig_islands))
matching.sort(reverse=True)
available_new = [True for island in self.mesh.islands]
available_orig = [True for item in island_list]
for face_count, i, j in matching:
if available_new[i] and available_orig[j]:
available_new[i] = available_orig[j] = False
self.mesh.islands[i].label = island_list[j].label
self.mesh.islands[i].abbreviation = island_list[j].abbreviation
def save(self, properties):
"""Export the document"""
# Note about scale: input is directly in blender length
# Mesh.scale_islands multiplies everything by a user-defined ratio
# exporters (SVG or PDF) multiply everything by 1000 (output in millimeters)
Exporter = Svg if properties.file_format == 'SVG' else Pdf
filepath = properties.filepath
extension = properties.file_format.lower()
filepath = bpy.path.ensure_ext(filepath, "." + extension)
# page size in meters
page_size = M.Vector((properties.output_size_x, properties.output_size_y))
# printable area size in meters
printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1))
unit_scale = bpy.context.scene.unit_settings.scale_length
ppm = properties.output_dpi * 100 / 2.54 # pixels per meter
# after this call, all dimensions will be in meters
self.mesh.scale_islands(unit_scale/properties.scale)
if properties.do_create_stickers:
self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers)
elif properties.do_create_numbers:
self.mesh.generate_numbers_alone(properties.sticker_width)
text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0
# title height must be somewhat larger that text size, glyphs go below the baseline
self.mesh.finalize_islands(printable_size, title_height=text_height * 1.2)
self.mesh.fit_islands(printable_size)
if properties.output_type != 'NONE':
# bake an image and save it as a PNG to disk or into memory
image_packing = properties.image_packing if properties.file_format == 'SVG' else 'ISLAND_EMBED'
use_separate_images = image_packing in ('ISLAND_LINK', 'ISLAND_EMBED')
self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images)
sce = bpy.context.scene
rd = sce.render
bk = rd.bake
recall = store_rna_properties(rd, bk, sce.cycles)
rd.engine = 'CYCLES'
for p in ('color', 'diffuse', 'direct', 'emit', 'glossy', 'indirect', 'transmission'):
setattr(bk, f"use_pass_{p}", (properties.output_type != 'TEXTURE'))
lookup = {'TEXTURE': 'DIFFUSE', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'COMBINED', 'SELECTED_TO_ACTIVE': 'COMBINED'}
sce.cycles.bake_type = lookup[properties.output_type]
bk.use_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = 1, 10, False, False
if properties.output_type == 'TEXTURE':
bk.use_pass_direct, bk.use_pass_indirect, bk.use_pass_color = False, False, True
sce.cycles.samples = 1
else:
sce.cycles.samples = properties.bake_samples
if sce.cycles.bake_type == 'COMBINED':
bk.use_pass_direct, bk.use_pass_indirect = True, True
bk.use_pass_diffuse, bk.use_pass_glossy, bk.use_pass_transmission, bk.use_pass_emit = True, False, False, True
if image_packing == 'PAGE_LINK':
self.mesh.save_image(printable_size * ppm, filepath)
elif image_packing == 'ISLAND_LINK':
image_dir = filepath[:filepath.rfind(".")]
self.mesh.save_separate_images(ppm, image_dir)
elif image_packing == 'ISLAND_EMBED':
self.mesh.save_separate_images(ppm, filepath, embed=Exporter.encode_image)
apply_rna_properties(recall, rd, bk, sce.cycles)
exporter = Exporter(properties)
exporter.write(self.mesh, filepath)
class Mesh:
"""Wrapper for Bpy Mesh"""
def __init__(self, bmesh, matrix):
self.data = bmesh
self.matrix = matrix.to_3x3()
self.looptex = bmesh.loops.layers.uv.new("Unfolded")
self.edges = {bmedge: Edge(bmedge) for bmedge in bmesh.edges}
self.islands = list()
self.pages = list()
for edge in self.edges.values():
edge.choose_main_faces()
if edge.main_faces:
edge.calculate_angle()
self.copy_freestyle_marks()
def delete_uvmap(self):
self.data.loops.layers.uv.remove(self.looptex) if self.looptex else None
def copy_freestyle_marks(self):
# NOTE: this is a workaround for NotImplementedError on bmesh.edges.layers.freestyle
mesh = bpy.data.meshes.new("unfolder_temp")
self.data.to_mesh(mesh)
for bmedge, edge in self.edges.items():
edge.freestyle = mesh.edges[bmedge.index].use_freestyle_mark
bpy.data.meshes.remove(mesh)
def mark_cuts(self):
for bmedge, edge in self.edges.items():
if edge.is_main_cut and not bmedge.is_boundary:
bmedge.seam = True
def check_correct(self, epsilon=1e-6):
"""Check for invalid geometry"""
def is_twisted(face):
if len(face.verts) <= 3:
return False
center = face.calc_center_median()
plane_d = center.dot(face.normal)
diameter = max((center - vertex.co).length for vertex in face.verts)
threshold = 0.01 * diameter
return any(abs(v.co.dot(face.normal) - plane_d) > threshold for v in face.verts)
null_edges = {e for e in self.edges.keys() if e.calc_length() < epsilon and e.link_faces}
null_faces = {f for f in self.data.faces if f.calc_area() < epsilon}
twisted_faces = {f for f in self.data.faces if is_twisted(f)}
inverted_scale = self.matrix.determinant() <= 0
if not (null_edges or null_faces or twisted_faces or inverted_scale):
return True
if inverted_scale:
raise UnfoldError(
"The object is flipped inside-out.\n"
"You can use Object -> Apply -> Scale to fix it. Export failed.")
disease = [("Remove Doubles", null_edges or null_faces), ("Triangulate", twisted_faces)]
cure = " and ".join(s for s, k in disease if k)
raise UnfoldError(
"The model contains:\n" +
(" {} zero-length edge(s)\n".format(len(null_edges)) if null_edges else "") +
(" {} zero-area face(s)\n".format(len(null_faces)) if null_faces else "") +
(" {} twisted polygon(s)\n".format(len(twisted_faces)) if twisted_faces else "") +
"The offenders are selected and you can use {} to fix them. Export failed.".format(cure),
{"verts": set(), "edges": null_edges, "faces": null_faces | twisted_faces}, self.data)
def generate_cuts(self, page_size, priority_effect):
"""Cut the mesh so that it can be unfolded to a flat net."""
normal_matrix = self.matrix.inverted().transposed()
islands = {Island(self, face, self.matrix, normal_matrix) for face in self.data.faces}
uvfaces = {face: uvface for island in islands for face, uvface in island.faces.items()}
uvedges = {loop: uvedge for island in islands for loop, uvedge in island.edges.items()}
for loop, uvedge in uvedges.items():
self.edges[loop.edge].uvedges.append(uvedge)
# check for edges that are cut permanently
edges = [edge for edge in self.edges.values() if not edge.force_cut and edge.main_faces]
if edges:
average_length = sum(edge.vector.length for edge in edges) / len(edges)
for edge in edges:
edge.generate_priority(priority_effect, average_length)
edges.sort(reverse=False, key=lambda edge: edge.priority)
for edge in edges:
if not edge.vector:
continue
edge_a, edge_b = (uvedges[l] for l in edge.main_faces)
old_island = join(edge_a, edge_b, size_limit=page_size)
if old_island:
islands.remove(old_island)
self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces))
for edge in self.edges.values():
# some edges did not know until now whether their angle is convex or concave
if edge.main_faces and (uvfaces[edge.main_faces[0].face].flipped or uvfaces[edge.main_faces[1].face].flipped):
edge.calculate_angle()
# ensure that the order of faces corresponds to the order of uvedges
if edge.main_faces:
reordered = [None, None]
for uvedge in edge.uvedges:
try:
index = edge.main_faces.index(uvedge.loop)
reordered[index] = uvedge
except ValueError:
reordered.append(uvedge)
edge.uvedges = reordered
for island in self.islands:
# if the normals are ambiguous, flip them so that there are more convex edges than concave ones
if any(uvface.flipped for uvface in island.faces.values()):
island_edges = {self.edges[uvedge.edge] for uvedge in island.edges}
balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges if not edge.is_cut(uvedge.uvface.face))
if balance < 0:
island.is_inside_out = True
# construct a linked list from each island's boundary
# uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped
neighbor_lookup, conflicts = dict(), dict()
for uvedge in island.boundary:
uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb
if uvvertex not in neighbor_lookup:
neighbor_lookup[uvvertex] = uvedge
else:
if uvvertex not in conflicts:
conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge]
else:
conflicts[uvvertex].append(uvedge)
for uvedge in island.boundary:
uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
if uvvertex not in conflicts:
# using the 'get' method so as to handle single-connected vertices properly
uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge)
uvedge.neighbor_right.neighbor_left = uvedge
else:
conflicts[uvvertex].append(uvedge)
# resolve merged vertices with more boundaries crossing
def direction_to_float(vector):
return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1)
for uvvertex, uvedges in conflicts.items():
def is_inwards(uvedge):
return uvedge.uvface.flipped == (uvedge.va is uvvertex)
def uvedge_sortkey(uvedge):
if is_inwards(uvedge):
return direction_to_float(uvedge.va.co - uvedge.vb.co)
else:
return direction_to_float(uvedge.vb.co - uvedge.va.co)
uvedges.sort(key=uvedge_sortkey)
for right, left in (
zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0])
else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2])):
left.neighbor_right = right
right.neighbor_left = left
return True
def generate_stickers(self, default_width, do_create_numbers=True):
"""Add sticker faces where they are needed."""
def uvedge_priority(uvedge):
"""Returns whether it is a good idea to stick something on this edge's face"""
# TODO: it should take into account overlaps with faces and with other stickers
face = uvedge.uvface.face
return face.calc_area() / face.calc_perimeter()
def add_sticker(uvedge, index, target_uvedge):
uvedge.sticker = Sticker(uvedge, default_width, index, target_uvedge)
uvedge.uvface.island.add_marker(uvedge.sticker)
def is_index_obvious(uvedge, target):
if uvedge in (target.neighbor_left, target.neighbor_right):
return True
if uvedge.neighbor_left.loop.edge is target.neighbor_right.loop.edge and uvedge.neighbor_right.loop.edge is target.neighbor_left.loop.edge:
return True
return False
for edge in self.edges.values():
index = None
if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vector.length_squared > 0:
target, source = edge.uvedges[:2]
if uvedge_priority(target) < uvedge_priority(source):
target, source = source, target
target_island = target.uvface.island
if do_create_numbers:
for uvedge in [source] + edge.uvedges[2:]:
if not is_index_obvious(uvedge, target):
# it will not be clear to see that these uvedges should be sticked together
# So, create an arrow and put the index on all stickers
target_island.sticker_numbering += 1
index = str(target_island.sticker_numbering)
if is_upsidedown_wrong(index):
index += "."
target_island.add_marker(Arrow(target, default_width, index))
break
add_sticker(source, index, target)
elif len(edge.uvedges) > 2:
target = edge.uvedges[0]
if len(edge.uvedges) > 2:
for source in edge.uvedges[2:]:
add_sticker(source, index, target)
def generate_numbers_alone(self, size):
global_numbering = 0
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2:
global_numbering += 1
index = str(global_numbering)
if is_upsidedown_wrong(index):
index += "."
for uvedge in edge.uvedges:
uvedge.uvface.island.add_marker(NumberAlone(uvedge, index, size))
def enumerate_islands(self):
for num, island in enumerate(self.islands, 1):
island.number = num
island.generate_label()
def scale_islands(self, scale):
for island in self.islands:
vertices = set(island.vertices.values())
for point in chain((vertex.co for vertex in vertices), island.fake_vertices):
point *= scale
def finalize_islands(self, cage_size, title_height=0):
for island in self.islands:
if title_height:
island.title = "[{}] {}".format(island.abbreviation, island.label)
points = [vertex.co for vertex in set(island.vertices.values())] + island.fake_vertices
angle, _ = cage_fit(points, (cage_size.y - title_height) / cage_size.x)
rot = M.Matrix.Rotation(angle, 2)
for point in points:
point.rotate(rot)
for marker in island.markers:
marker.rot = rot @ marker.rot
bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height))
# DEBUG
# top_right = M.Vector((max(v.x for v in points), max(v.y for v in points) - title_height))
# print(f"fitted aspect: {(top_right.y - bottom_left.y) / (top_right.x - bottom_left.x)}")
for point in points:
point -= bottom_left
island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points)))
def largest_island_ratio(self, cage_size):
return max(i / p for island in self.islands for (i, p) in zip(island.bounding_box, cage_size))
def fit_islands(self, cage_size):
"""Move islands so that they fit onto pages, based on their bounding boxes"""
def try_emplace(island, page_islands, stops_x, stops_y, occupied_cache):
"""Tries to put island to each pair from stops_x, stops_y
and checks if it overlaps with any islands present on the page.
Returns True and positions the given island on success."""
bbox_x, bbox_y = island.bounding_box.xy
for x in stops_x:
if x + bbox_x > cage_size.x:
continue
for y in stops_y:
if y + bbox_y > cage_size.y or (x, y) in occupied_cache:
continue
for i, obstacle in enumerate(page_islands):
# if this obstacle overlaps with the island, try another stop
if (x + bbox_x > obstacle.pos.x and
obstacle.pos.x + obstacle.bounding_box.x > x and
y + bbox_y > obstacle.pos.y and
obstacle.pos.y + obstacle.bounding_box.y > y):
if x >= obstacle.pos.x and y >= obstacle.pos.y:
occupied_cache.add((x, y))
# just a stupid heuristic to make subsequent searches faster
if i > 0:
page_islands[1:i+1] = page_islands[:i]
page_islands[0] = obstacle
break
else:
# if no obstacle called break, this position is okay
island.pos.xy = x, y
page_islands.append(island)
stops_x.append(x + bbox_x)
stops_y.append(y + bbox_y)
return True
return False
def drop_portion(stops, border, divisor):
stops.sort()
# distance from left neighbor to the right one, excluding the first stop
distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))]
quantile = sorted(distances)[len(distances) // divisor]
return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile]
if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands):
raise UnfoldError(
"An island is too big to fit onto page of the given size. "
"Either downscale the model or find and split that island manually.\n"
"Export failed, sorry.")
# sort islands by their diagonal... just a guess
remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared)
page_num = 1 # TODO delete me
while remaining_islands:
# create a new page and try to fit as many islands onto it as possible
page = Page(page_num)
page_num += 1
occupied_cache = set()
stops_x, stops_y = [0], [0]
for island in remaining_islands:
try_emplace(island, page.islands, stops_x, stops_y, occupied_cache)
# if overwhelmed with stops, drop a quarter of them
if len(stops_x)**2 > 4 * len(self.islands) + 100:
stops_x = drop_portion(stops_x, cage_size.x, 4)
stops_y = drop_portion(stops_y, cage_size.y, 4)
remaining_islands = [island for island in remaining_islands if island not in page.islands]
self.pages.append(page)
def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False):
if separate_image:
for island in self.islands:
island.save_uv_separate(self.looptex)
else:
for island in self.islands:
island.save_uv(self.looptex, cage_size)
def save_image(self, page_size_pixels: M.Vector, filename):
for page in self.pages:
image = create_blank_image("Page {}".format(page.name), page_size_pixels, alpha=1)
image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name)
faces = [face for island in page.islands for face in island.faces]
self.bake(faces, image)
image.save()
image.user_clear()
bpy.data.images.remove(image)
def save_separate_images(self, scale, filepath, embed=None):
for i, island in enumerate(self.islands):
image_name = "Island {}".format(i)
image = create_blank_image(image_name, island.bounding_box * scale, alpha=0)
self.bake(island.faces.keys(), image)
if embed:
island.embedded_image = embed(image)
else:
from os import makedirs
image_dir = filepath
makedirs(image_dir, exist_ok=True)
image_path = os_path.join(image_dir, "island{}.png".format(i))
image.filepath_raw = image_path
image.save()
island.image_path = image_path
image.user_clear()
bpy.data.images.remove(image)
def bake(self, faces, image):
if not self.looptex:
raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.")
ob = bpy.context.active_object
me = ob.data
# in Cycles, the image for baking is defined by the active Image Node
temp_nodes = dict()
for mat in me.materials:
mat.use_nodes = True
img = mat.node_tree.nodes.new('ShaderNodeTexImage')
img.image = image
temp_nodes[mat] = img
mat.node_tree.nodes.active = img
# move all excess faces to negative numbers (that is the only way to disable them)
ignored_uvs = [loop[self.looptex].uv for f in self.data.faces if f not in faces for loop in f.loops]
for uv in ignored_uvs:
uv *= -1
bake_type = bpy.context.scene.cycles.bake_type
sta = bpy.context.scene.render.bake.use_selected_to_active
try:
ob.update_from_editmode()
me.uv_layers.active = me.uv_layers[self.looptex.name]
bpy.ops.object.bake(type=bake_type, margin=1, use_selected_to_active=sta, cage_extrusion=100, use_clear=False)
except RuntimeError as e:
raise UnfoldError(*e.args)
finally:
for mat, node in temp_nodes.items():
mat.node_tree.nodes.remove(node)
for uv in ignored_uvs:
uv *= -1
class Edge:
"""Wrapper for BPy Edge"""
__slots__ = (
'data', 'va', 'vb', 'main_faces', 'uvedges',
'vector', 'angle',
'is_main_cut', 'force_cut', 'priority', 'freestyle')
def __init__(self, edge):
self.data = edge
self.va, self.vb = edge.verts
self.vector = self.vb.co - self.va.co
# if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order
# this constraint is assured at the time of finishing mesh.generate_cuts
self.uvedges = list()
self.force_cut = edge.seam # such edges will always be cut
self.main_faces = None # two faces that may be connected in the island
# is_main_cut defines whether the two main faces are connected
# all the others will be assumed to be cut
self.is_main_cut = True
self.priority = None
self.angle = None
self.freestyle = False
def choose_main_faces(self):
"""Choose two main faces that might get connected in an island"""
def score(pair):
return abs(pair[0].face.normal.dot(pair[1].face.normal))
loops = self.data.link_loops
if len(loops) == 2:
self.main_faces = list(loops)
elif len(loops) > 2:
# find (with brute force) the pair of indices whose loops have the most similar normals
self.main_faces = max(combinations(loops, 2), key=score)
if self.main_faces and self.main_faces[1].vert == self.va:
self.main_faces = self.main_faces[::-1]
def calculate_angle(self):
"""Calculate the angle between the main faces"""
loop_a, loop_b = self.main_faces
normal_a, normal_b = (l.face.normal for l in self.main_faces)
if not normal_a or not normal_b:
self.angle = -3 # just a very sharp angle
else:
s = normal_a.cross(normal_b).dot(self.vector.normalized())
s = max(min(s, 1.0), -1.0) # deal with rounding errors
self.angle = asin(s)
if loop_a.link_loop_next.vert != loop_b.vert or loop_b.link_loop_next.vert != loop_a.vert:
self.angle = abs(self.angle)
def generate_priority(self, priority_effect, average_length):
"""Calculate the priority value for cutting"""
angle = self.angle
if angle > 0:
self.priority = priority_effect['CONVEX'] * angle / pi
else:
self.priority = priority_effect['CONCAVE'] * (-angle) / pi
self.priority += (self.vector.length / average_length) * priority_effect['LENGTH']
def is_cut(self, face):
"""Return False if this edge will the given face to another one in the resulting net
(useful for edges with more than two faces connected)"""
# Return whether there is a cut between the two main faces
if self.main_faces and face in {loop.face for loop in self.main_faces}:
return self.is_main_cut
# All other faces (third and more) are automatically treated as cut
else:
return True
def other_uvedge(self, this):
"""Get an uvedge of this edge that is not the given one
causes an IndexError if case of less than two adjacent edges"""
return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0]
class Island:
"""Part of the net to be exported"""
__slots__ = (
'mesh', 'faces', 'edges', 'vertices', 'fake_vertices', 'boundary', 'markers',
'pos', 'bounding_box',
'image_path', 'embedded_image',
'number', 'label', 'abbreviation', 'title',
'has_safe_geometry', 'is_inside_out',
'sticker_numbering')
def __init__(self, mesh, face, matrix, normal_matrix):
"""Create an Island from a single Face"""
self.mesh = mesh
self.faces = dict() # face -> uvface
self.edges = dict() # loop -> uvedge
self.vertices = dict() # loop -> uvvertex
self.fake_vertices = list()
self.markers = list()
self.label = None
self.abbreviation = None
self.title = None
self.pos = M.Vector((0, 0))
self.image_path = None
self.embedded_image = None
self.is_inside_out = False # swaps concave <-> convex edges
self.has_safe_geometry = True
self.sticker_numbering = 0
uvface = UVFace(face, self, matrix, normal_matrix)
self.vertices.update(uvface.vertices)
self.edges.update(uvface.edges)
self.faces[face] = uvface
# UVEdges on the boundary
self.boundary = list(self.edges.values())
def add_marker(self, marker):
self.fake_vertices.extend(marker.bounds)
self.markers.append(marker)
def generate_label(self, label=None, abbreviation=None):
"""Assign a name to this island automatically"""
abbr = abbreviation or self.abbreviation or str(self.number)
# TODO: dots should be added in the last instant when outputting any text
if is_upsidedown_wrong(abbr):
abbr += "."
self.label = label or self.label or "Island {}".format(self.number)
self.abbreviation = abbr
def save_uv(self, tex, cage_size):
"""Save UV Coordinates of all UVFaces to a given UV texture
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / cage_size.x, 1 / cage_size.y
for loop, uvvertex in self.vertices.items():
uv = uvvertex.co + self.pos
loop[tex].uv = uv.x * scale_x, uv.y * scale_y
def save_uv_separate(self, tex):
"""Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y
for loop, uvvertex in self.vertices.items():
loop[tex].uv = uvvertex.co.x * scale_x, uvvertex.co.y * scale_y
def join(uvedge_a, uvedge_b, size_limit=None, epsilon=1e-6):
"""
Try to join other island on given edge
Returns False if they would overlap
"""
class Intersection(Exception):
pass
class GeometryError(Exception):
pass
def is_below(self, other, correct_geometry=True):
if self is other:
return False
if self.top < other.bottom:
return True
if other.top < self.bottom:
return False
if self.max.tup <= other.min.tup:
return True
if other.max.tup <= self.min.tup:
return False
self_vector = self.max.co - self.min.co
min_to_min = other.min.co - self.min.co
cross_b1 = self_vector.cross(min_to_min)
cross_b2 = self_vector.cross(other.max.co - self.min.co)
if cross_b2 < cross_b1:
cross_b1, cross_b2 = cross_b2, cross_b1
if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())):
return True
if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())):
return False
other_vector = other.max.co - other.min.co
cross_a1 = other_vector.cross(-min_to_min)
cross_a2 = other_vector.cross(self.max.co - other.min.co)
if cross_a2 < cross_a1:
cross_a1, cross_a2 = cross_a2, cross_a1
if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())):
return False
if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())):
return True
if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0:
if correct_geometry:
raise GeometryError
elif self.is_uvface_upwards() == other.is_uvface_upwards():
raise Intersection
return False
if self.min.tup == other.min.tup or self.max.tup == other.max.tup:
return cross_a2 > cross_b2
raise Intersection
class QuickSweepline:
"""Efficient sweepline based on binary search, checking neighbors only"""
def __init__(self):
self.children = list()
def add(self, item, cmp=is_below):
low, high = 0, len(self.children)
while low < high:
mid = (low + high) // 2
if cmp(self.children[mid], item):
low = mid + 1
else:
high = mid
self.children.insert(low, item)
def remove(self, item, cmp=is_below):
index = self.children.index(item)
self.children.pop(index)
if index > 0 and index < len(self.children):
# check for intersection
if cmp(self.children[index], self.children[index-1]):
raise GeometryError
class BruteSweepline:
"""Safe sweepline which checks all its members pairwise"""
def __init__(self):
self.children = set()
def add(self, item, cmp=is_below):
for child in self.children:
if child.min is not item.min and child.max is not item.max:
cmp(item, child, False)
self.children.add(item)
def remove(self, item):
self.children.remove(item)
def sweep(sweepline, segments):
"""Sweep across the segments and raise an exception if necessary"""
# careful, 'segments' may be a use-once iterator
events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup)
events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup)
while events_remove:
while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup:
sweepline.add(events_add.pop())
sweepline.remove(events_remove.pop())
def root_find(value, tree):
"""Find the root of a given value in a forest-like dictionary
also updates the dictionary using path compression"""
parent, relink = tree.get(value), list()
while parent is not None:
relink.append(value)
value, parent = parent, tree.get(parent)
tree.update(dict.fromkeys(relink, value))
return value
def slope_from(position):
def slope(uvedge):
vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co)
return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length)
return slope
island_a, island_b = (e.uvface.island for e in (uvedge_a, uvedge_b))
if island_a is island_b:
return False
elif len(island_b.faces) > len(island_a.faces):
uvedge_a, uvedge_b = uvedge_b, uvedge_a
island_a, island_b = island_b, island_a
# check if vertices and normals are aligned correctly
verts_flipped = uvedge_b.loop.vert is uvedge_a.loop.vert
flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped
# determine rotation
# NOTE: if the edges differ in length, the matrix will involve uniform scaling.
# Such situation may occur in the case of twisted n-gons
first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va)
if not flipped:
rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co)
else:
flip = M.Matrix(((-1, 0), (0, 1)))
rot = fitting_matrix(flip @ (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) @ flip
trans = uvedge_a.vb.co - rot @ first_b.co
# preview of island_b's vertices after the join operation
phantoms = {uvvertex: UVVertex(rot @ uvvertex.co + trans) for uvvertex in island_b.vertices.values()}
# check the size of the resulting island
if size_limit:
points = [vert.co for vert in chain(island_a.vertices.values(), phantoms.values())]
left, right, bottom, top = (fn(co[i] for co in points) for i in (0, 1) for fn in (min, max))
bbox_width = right - left
bbox_height = top - bottom
if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
return False
if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
_, height = cage_fit(points, size_limit.y / size_limit.x)
if height > size_limit.y:
return False
distance_limit = uvedge_a.loop.edge.calc_length() * epsilon
# try and merge UVVertices closer than sqrt(distance_limit)
merged_uvedges = set()
merged_uvedge_pairs = list()
# merge all uvvertices that are close enough using a union-find structure
# uvvertices will be merged only in cases island_b->island_a and island_a->island_a
# all resulting groups are merged together to a uvvertex of island_a
is_merged_mine = False
shared_vertices = {loop.vert for loop in chain(island_a.vertices, island_b.vertices)}
for vertex in shared_vertices:
uvs_a = {island_a.vertices.get(loop) for loop in vertex.link_loops} - {None}
uvs_b = {island_b.vertices.get(loop) for loop in vertex.link_loops} - {None}
for a, b in product(uvs_a, uvs_b):
if (a.co - phantoms[b].co).length_squared < distance_limit:
phantoms[b] = root_find(a, phantoms)
for a1, a2 in combinations(uvs_a, 2):
if (a1.co - a2.co).length_squared < distance_limit:
a1, a2 = (root_find(a, phantoms) for a in (a1, a2))
if a1 is not a2:
phantoms[a2] = a1
is_merged_mine = True
for source, target in phantoms.items():
target = root_find(target, phantoms)
phantoms[source] = target
for uvedge in (chain(island_a.boundary, island_b.boundary) if is_merged_mine else island_b.boundary):
for loop in uvedge.loop.link_loops:
partner = island_b.edges.get(loop) or island_a.edges.get(loop)
if partner is not None and partner is not uvedge:
paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va)
if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped:
paired_a, paired_b = paired_b, paired_a
if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b:
# if these two edges will get merged, add them both to the set
merged_uvedges.update((uvedge, partner))
merged_uvedge_pairs.append((uvedge, partner))
break
if uvedge_b not in merged_uvedges:
raise UnfoldError("Export failed. Please report this error, including the model if you can.")
boundary_other = [
PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped)
for uvedge in island_b.boundary if uvedge not in merged_uvedges]