-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcore.py
236 lines (203 loc) · 8.14 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from datetime import datetime
from typing import List, Optional
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader
from langchain_chroma import Chroma
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_core.documents import Document
import logging
import shutil
from rich.logging import RichHandler
class CustomFileHandler(logging.FileHandler):
"""Custom file handler that ensures UTF-8 encoding"""
def __init__(self, filename, mode='a', encoding='utf-8', delay=False):
super().__init__(filename, mode, encoding, delay)
def emit(self, record):
try:
msg = self.format(record)
stream = self.stream
stream.write(msg + self.terminator)
self.flush()
except Exception:
self.handleError(record)
class CustomTextLoader:
"""Custom document loader with enhanced encoding support"""
def __init__(self, file_path: str):
self.file_path = file_path
def load(self) -> List[Document]:
"""Load and return documents from a single file"""
return list(self.lazy_load())
def lazy_load(self):
"""Generator method to lazily load documents"""
encodings = ['utf-8', 'latin-1', 'cp1252']
for encoding in encodings:
try:
with open(self.file_path, 'r', encoding=encoding) as file:
text = file.read()
metadata = {"source": self.file_path}
yield Document(page_content=text, metadata=metadata)
break
except UnicodeDecodeError:
continue
except Exception as e:
logger.error(f"Error loading file {self.file_path}: {str(e)}")
return
def setup_logger():
"""Configure logging with Rich and timestamp"""
if not os.path.exists('logs'):
os.makedirs('logs')
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
log_filename = f'logs/rag_system_{timestamp}.log'
logging.basicConfig(
level=logging.INFO,
format="%(message)s",
handlers=[
CustomFileHandler(log_filename, encoding='utf-8'),
RichHandler(
rich_tracebacks=True,
markup=True,
show_time=False,
enable_link_path=False
)
]
)
return logging.getLogger("rich")
logger = setup_logger()
class RAGSystem:
"""Main RAG system implementation"""
def __init__(self):
logger.info("Initializing RAG System")
load_dotenv()
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.model_name = os.getenv("MODEL_NAME")
self.collection_name = os.getenv("COLLECTION_NAME")
self.persist_directory = os.getenv("PERSIST_DIRECTORY")
# Initialize components
self.llm = ChatOpenAI(
temperature=0.7,
model_name=self.model_name
)
self.embeddings = OpenAIEmbeddings()
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
logger.info("RAG System initialized successfully")
def load_documents(self, directory_path: str) -> List[Document]:
"""Load documents from a directory"""
logger.info(f"Loading documents from {directory_path}")
try:
loader = DirectoryLoader(
directory_path,
glob="**/*.txt",
loader_cls=CustomTextLoader
)
documents = loader.load()
if not documents:
logger.warning("No documents were loaded")
else:
logger.info(f"Successfully loaded {len(documents)} documents")
return documents
except Exception as e:
logger.error(f"Error in load_documents: {str(e)}")
return []
def process_documents(self, documents: List[Document]) -> List[Document]:
"""Split documents into chunks"""
logger.info("Processing documents into chunks")
if not documents:
return []
try:
texts = self.text_splitter.split_documents(documents)
logger.info(f"Created {len(texts)} text chunks")
return texts
except Exception as e:
logger.error(f"Error in process_documents: {str(e)}")
return []
def create_vector_store(self, texts: List[Document]) -> Optional[Chroma]:
"""Create vector store"""
logger.info("Creating vector store")
if not texts:
logger.warning("No texts to process. Vector store will be empty.")
return None
try:
vectordb = Chroma.from_documents(
documents=texts,
embedding=self.embeddings,
persist_directory=self.persist_directory,
collection_name=self.collection_name
)
logger.info("Vector store created successfully")
return vectordb
except Exception as e:
logger.error(f"Error in create_vector_store: {str(e)}")
return None
def load_vector_store(self) -> Optional[Chroma]:
"""Load existing vector store"""
logger.info("Loading existing vector store")
try:
vectordb = Chroma(
persist_directory=self.persist_directory,
embedding_function=self.embeddings,
collection_name=self.collection_name
)
logger.info("Vector store loaded successfully")
return vectordb
except Exception as e:
logger.error(f"Error in load_vector_store: {str(e)}")
return None
def delete_vector_store(self) -> bool:
"""Delete the vector store"""
logger.info("Deleting vector store")
try:
if os.path.exists(self.persist_directory):
shutil.rmtree(self.persist_directory)
logger.info("Vector store deleted successfully")
return True
else:
logger.warning("Vector store directory does not exist")
return False
except Exception as e:
logger.error(f"Error deleting vector store: {str(e)}")
return False
def get_document_count(self) -> int:
"""Get the total number of documents in the vector store"""
logger.info("Getting document count")
try:
vectordb = self.load_vector_store()
if vectordb:
count = len(vectordb.get()['ids'])
logger.info(f"Found {count} documents in vector store")
return count
else:
logger.warning("No vector store found")
return 0
except Exception as e:
logger.error(f"Error getting document count: {str(e)}")
return 0
def create_qa_chain(self, vectordb: Chroma) -> Optional[RetrievalQA]:
"""Create QA chain with custom prompt"""
logger.info("Creating QA chain")
if not vectordb:
raise ValueError("Vector store is empty or not initialized")
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Context: {context}
Question: {question}
Answer: """
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=vectordb.as_retriever(search_kwargs={"k": 3}),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
return_source_documents=True
)
logger.info("QA chain created successfully")
return qa_chain