-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphase3-train-multi-iters.py
300 lines (244 loc) · 9.98 KB
/
phase3-train-multi-iters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import sys
import time
import numpy as np
import torch
from PIL import Image
from torch import nn, optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from tqdm import tqdm
# our code
import pi
from datasets import (got10kdataset, lasotdataset, nfsdataset, otbdataset,
trackingnetdataset, uavdataset)
from datasets.dataset import MultiDataset
from datasets.dataset import TrainDatasetWrapper as wrap_train
from models.unet_model import UNetMedium, UNetSmall
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from utils import utils
num_iters = 2
CHECKPOINTS_FOLDER = "checkpoints_sftrackpp"
def save_all_nets(models, epoch):
net_phase1, net_phase2, net_phase2_1, net_phase3 = models
if not os.path.exists(CHECKPOINTS_FOLDER):
os.system("mkdir -p %s" % CHECKPOINTS_FOLDER)
utils.save_model(
net_phase1.module,
"%s/phase3_net1_basic_e%d.pth" % (CHECKPOINTS_FOLDER, epoch))
utils.save_model(
net_phase2,
"%s/phase3_net2_basic_e%d.pth" % (CHECKPOINTS_FOLDER, epoch))
utils.save_model(
net_phase2_1.module,
"%s/phase3_net2_1_basic_e%d.pth" % (CHECKPOINTS_FOLDER, epoch))
utils.save_model(
net_phase3.module,
"%s/phase3_net3_basic_e%d.pth" % (CHECKPOINTS_FOLDER, epoch))
def forward_batch(num_trackers, models, sfseg_params, batch, batch_idx,
device):
rgb_frames, gt_bbox_imgs, trackers_bbox_imgs = batch
bs, num_frames, _, h, w = rgb_frames.shape
M0 = sfseg_params["M0"]
rgb_frames = rgb_frames.to(device=device)
gt_bbox_imgs = gt_bbox_imgs.to(device=device).float()
trackers_bbox_imgs = trackers_bbox_imgs.to(device=device).float()
# rgb_frames: BS x 2*M0 + 1 x channels x H x W
# trackers_bbox_imgs: x num_trackers x
# gt_bbox_imgs: x 1 x
# Phase1. Output from all trackers
phase1_segms = []
for tr_idx in range(num_trackers):
# concatenate on channels axis
tracker_inp = torch.cat(
[rgb_frames, trackers_bbox_imgs[:, :, tr_idx:tr_idx + 1]], axis=2)
segm_pred1 = models[0](tracker_inp.view(bs * num_frames, 4, h,
w)).view(
bs, num_frames, 1, h, w)
phase1_segms.append(segm_pred1)
# Phase 2. SFSeg
input_masks = torch.cat(phase1_segms, axis=2)
phase2_segm_interm = utils.sfsegpp(models[1],
input_masks=input_masks,
trackers_output=input_masks,
sfseg_params=sfseg_params,
num_iters=num_iters)[:, M0:M0 + 1]
# phase2_segm_interm shape: BS x 1 x H x W
phase2_segm = models[2](phase2_segm_interm)
# Phase 3
phase3_bbox = models[3](phase2_segm)
if batch_idx % 10 == 9:
Image.fromarray(
(torch.sigmoid(phase3_bbox[0, 0]).data.cpu() * 255).numpy().astype(
np.uint8)).save("pics/abc_phase3.png")
Image.fromarray(
(torch.sigmoid(trackers_bbox_imgs[0, 1, 0]).data.cpu() *
255).numpy().astype(np.uint8)).save("pics/abc_phase3_dimp.png")
return phase3_bbox, gt_bbox_imgs
def train_phase3(epoch, trackers, models, train_loader, sfseg_params,
optimizer, scheduler, loss_fcn, device):
for model in models:
model.train()
training_loss = 0
iou_all = 0
num_trackers = len(trackers)
M0 = sfseg_params["M0"]
batch_sim_loss = 0
iou_batch = 0
num_train_samples = 200
for batch_idx, batch in enumerate(tqdm(train_loader)):
phase3_bbox, gt_bbox_imgs = forward_batch(num_trackers, models,
sfseg_params, batch,
batch_idx, device)
batch_loss = loss_fcn(phase3_bbox, gt_bbox_imgs[:, M0])
crt_batch_loss = batch_loss.item()
training_loss += crt_batch_loss
batch_loss.backward()
batch_sim_loss += crt_batch_loss
with torch.no_grad():
iou = utils.iou(phase3_bbox[0, 0], gt_bbox_imgs[0, M0, 0], th=0.75)
iou_batch += iou
iou_all += iou
# Optimizer
if batch_idx % 10 == 9:
batch_sim_loss /= 10
iou_batch /= 10
optimizer.step()
optimizer.zero_grad()
scheduler.step(batch_sim_loss)
batch_sim_loss = 0
iou_batch = 0
if batch_idx > num_train_samples:
break
training_loss /= batch_idx
iou_all /= batch_idx
return training_loss
def val_phase3(epoch, trackers, models, val_loader, sfseg_params, loss_fcn,
device):
for model in models:
model.eval()
val_loss = 0
iou_all = 0
num_trackers = len(trackers)
M0 = sfseg_params["M0"]
batch_sim_loss = 0
iou_batch = 0
with torch.no_grad():
for batch_idx, batch in enumerate(tqdm(val_loader)):
phase3_bbox, gt_bbox_imgs = forward_batch(num_trackers, models,
sfseg_params, batch,
batch_idx, device)
batch_loss = loss_fcn(phase3_bbox, gt_bbox_imgs[:, M0])
crt_batch_loss = batch_loss.item()
val_loss += crt_batch_loss
batch_sim_loss += crt_batch_loss
with torch.no_grad():
iou = utils.iou(phase3_bbox[0, 0],
gt_bbox_imgs[0, M0, 0],
th=0.75)
iou_batch += iou
iou_all += iou
# Optimizer
if batch_idx % 10 == 9:
batch_sim_loss /= 10
iou_batch /= 10
batch_sim_loss = 0
iou_batch = 0
val_loss /= len(val_loader)
iou_all /= len(val_loader)
return val_loss
def main():
n_epochs = 10
device = "cuda" if torch.cuda.is_available() else "cpu"
# trackers = ["dimp", "atom", "segm", "siamban", "siamrpnpp"]
trackers = ["dimp"]
kernel_size = (3, 5, 5)
M0 = kernel_size[0] // 2
train_datasets = []
train_datasets.append(
wrap_train(got10kdataset.GOT10KDataset(split="train_few"),
trackers,
M0,
samples_per_video=1,
end_idx=500))
train_datasets.append(
wrap_train(trackingnetdataset.TrackingNetDataset(split="train_few"),
trackers,
M0=M0,
samples_per_video=1,
end_idx=500))
train_composed_dataset = MultiDataset(train_datasets)
val_datasets = []
val_datasets.append(
wrap_train(got10kdataset.GOT10KDataset(split="train_few"),
trackers,
M0,
samples_per_video=1,
start_idx=900))
val_datasets.append(
wrap_train(trackingnetdataset.TrackingNetDataset(split="train_few"),
trackers,
M0=M0,
samples_per_video=1,
start_idx=900))
val_composed_dataset = MultiDataset(val_datasets)
train_loader = DataLoader(train_composed_dataset,
batch_size=1,
shuffle=True,
num_workers=20)
val_loader = DataLoader(val_composed_dataset,
batch_size=1,
shuffle=False,
num_workers=20)
# models
net_phase1 = UNetMedium(n_inp=4, n_outp=1, with_dropout=False)
utils.load_model(net_phase1,
"%s/phase2_net1_basic.pth" % CHECKPOINTS_FOLDER)
net_phase1.to(device)
net_phase1 = nn.DataParallel(net_phase1)
net_phase2 = nn.Conv2d(in_channels=len(trackers),
out_channels=1,
kernel_size=1,
bias=True)
utils.load_model(net_phase2,
"%s/phase2_net2_basic.pth" % CHECKPOINTS_FOLDER)
net_phase2.to(device)
net_phase2_1 = UNetSmall(n_inp=1, n_outp=1, with_dropout=False)
utils.load_model(net_phase2_1,
"%s/phase2_net2_1_basic.pth" % CHECKPOINTS_FOLDER)
net_phase2_1.to(device)
net_phase2_1 = nn.DataParallel(net_phase2_1)
net_phase3 = UNetSmall(n_inp=1, n_outp=1, with_dropout=False)
net_phase3.to(device)
net_phase3 = nn.DataParallel(net_phase3)
models = [net_phase1, net_phase2, net_phase2_1, net_phase3]
all_params = utils.chain_generators(net_phase1.parameters(),
net_phase2.parameters(),
net_phase2_1.parameters(),
net_phase3.parameters())
optimizer = optim.SGD(all_params,
lr=1e-2,
weight_decay=1e-5,
nesterov=True,
momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer,
patience=7,
factor=0.1,
threshold=0.005,
min_lr=1e-5,
verbose=True)
loss_fcn = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(1.)).to(device)
sfseg_params = {}
M0 = kernel_size[0] // 2
sfseg_params["M0"] = M0
sfseg_params["filter"] = pi.init_cnn_filter(kernel_size)
sfseg_params["p"] = 0.1
sfseg_params["alpha"] = 0.5
for epoch in range(n_epochs):
train_phase3(epoch, trackers, models, train_loader, sfseg_params,
optimizer, scheduler, loss_fcn, device)
val_phase3(epoch, trackers, models, val_loader, sfseg_params, loss_fcn,
device)
save_all_nets(models, epoch)
if __name__ == '__main__':
main()