-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathanalysis_16S_v1.R
640 lines (531 loc) · 22.6 KB
/
analysis_16S_v1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# analysis_16S_v1.R
# By: Julia Ponomarenko, CRG
# Date: Nov 28, 2018
# This is an interactive script to play with data rather than a finalized one.
# Therefore, run it in R Studio.
# https://rpubs.com/dillmcfarlan/R_microbiotaSOP
# https://f1000research.com/articles/5-1492/v2
#Updated R to 3.5.1 (2018-07-02) and R Studio to the latest.
#Got phyloseq 1.24.2 and it was installed smoothly.
#With old version of R only old version of phyloseq can be installed, which didn't work.
# install microbiome
library(BiocInstaller)
source("http://www.bioconductor.org/biocLite.R")
biocLite("microbiome")
####
library(phyloseq)
library(microbiome)
library(caret)
library(reshape2)
library(ggplot2)
library(dplyr)
library(ape)
library(gplots)
library(Matrix)
library(lme4)
library(phangorn)
library(plotly)
library(tidyr)
library(vegan)
library(VennDiagram)
library(plyr)
library(RColorBrewer)
########## Get input data #################
#OTU table (shared file)
df = read.table("16S_OTU_shared.txt", header=F, sep="\t", as.is = TRUE)
df <- df[,-c(1,3)]
df <- t(df)
d <- df
colnames(d) <- d[1,]
d <- d[-1,]
rownames(d) <- d[,1]
d <- d[,-1]
d <- data.frame(d, stringsAsFactors=F)
d1 = data.frame(lapply(d, function(x) as.numeric(x)),
check.names=F, row.names = rownames(d)) # to preserve column names
otumat <- as.matrix(d1)
class(otumat)
#Taxonomy of each OTU
df = read.table("16S_OTU_taxonomy.txt", header=TRUE, sep="\t", as.is = T)
df[df$OTU == "Otu002",]
df <- as.data.frame(sapply(df, function(x) {gsub("\\s*\\([^\\)]+\\)", "", x)}))
df[df$OTU == "Otu002",]
#genus is the lowest taxa level for 16S
df <- separate(df, Taxonomy, into = c("Domain", "Phylum", "Class", "Order", "Family", "Genus"), sep=";")
df[df$OTU == "Otu002",]
row.names(df) <- df[,1]
df <- df[,-c(1,2)]
taxmat <- as.matrix(df)
# metadata with diversity indexes
meta = read.table("16S_metadata.txt", header=TRUE, sep="\t", as.is = T)
meta <- meta[,-1]
meta$group <- substr(meta$Sample, 1, 1)
meta <- cbind.data.frame(Sample=meta$group, Group = "", meta[,-1])
meta$Group <- substr(meta$Sample, 1, 1)
row.names(meta) <- meta[,1]
meta <- meta[,-1]
class(meta)
meta[rownames(meta) == "D6306",]$Group <- "D6306"
meta[rownames(meta) == "HM782",]$Group <- "HM782"
meta[rownames(meta) == "HM783",]$Group <- "HM783"
# read the tree
tree <- read_tree("16S_OTU.tre")
#plot(tree)
#Create phyloseq object
OTU = otu_table(otumat, taxa_are_rows = TRUE)
TAX = tax_table(taxmat)
physeq = phyloseq(OTU, TAX)
sample_data <- sample_data(meta, errorIfNULL=TRUE)
ps = merge_phyloseq(physeq, sample_data, tree)
ps
######### End of input data #############
### Collapse OTUs by similar genus (the lowest taxa level for 16S)
ntaxa(ps)
ps2 <- tax_glom(ps, taxrank="Genus")
ntaxa(ps2); tax_table(ps2)[1:3, c("Phylum", "Class", "Order", "Family", "Genus")]
otumat <- otu_table(ps2)
Object <- ps2
##### Taxonomic filtering (see https://f1000research.com/articles/5-1492/v2)
#
#One of the reasons to filter in this way is to avoid spending much time
#analyzing taxa that were seen only rarely among samples. This also turns
# out to be a useful filter of noise (taxa that are actually just artifacts
#of the data collection process), a step that should probably be considered
#essential for datasets constructed via heuristic OTU-clustering methods,
#which are notoriously prone to generating spurious taxa.
# Considering that this is really a noise, we just remove those taxa, instead of aggregating them to other.
# Compute prevalence of each phylum, which is defined as
# the number of samples in which the phylum appears
prevdf = apply(X = otu_table(ps2),
MARGIN = ifelse(taxa_are_rows(ps2), yes = 1, no = 2),
FUN = function(x){sum(x > 0)})
# Add total read counts to this data.frame
prevdf = data.frame(Prevalence = prevdf, TotalCounts = taxa_sums(ps2), tax_table(ps2))
plyr::ddply(prevdf, "Phylum", function(df1){
cbind(mean(df1$Prevalence),sum(df1$Prevalence), sum(df1$TotalCounts))})
# It can be seen that some phyla appear only in one or few samples
# and some have very low total counts
# Let's remove those phyla manually
remove_phyla <- c("candidate_division_WPS-2","Elusimicrobia","Latescibacteria","SR1","Tenericutes",
"Bacteria_unclassified")
ps2 <- subset_taxa(ps2, !Phylum %in% remove_phyla)
# Which phyla?
unique(factor(tax_table(ps2)[, "Phylum"]))
Object <- ps2
###### END of filtering taxa #######
###### Explore MOCK samples ############
ps2 <- Object
pmock <- subset_samples(ps2, sample_names(ps2) %in% c("D6306","HM782","HM783"))
# filter rare taxa
ps2 <- pmock
prevdf = apply(X = otu_table(ps2),
MARGIN = ifelse(taxa_are_rows(ps2), yes = 1, no = 2),
FUN = function(x){sum(x > 0)})
prevdf = data.frame(Prevalence = prevdf, TotalCounts = taxa_sums(ps2), tax_table(ps2))
plyr::ddply(prevdf, "Phylum", function(df1){
cbind(mean(df1$Prevalence),sum(df1$Prevalence), sum(df1$TotalCounts))})
keepTaxa = rownames(prevdf)[(prevdf$TotalCounts >= 100)]
ps2 = prune_taxa(keepTaxa, ps2)
tax_table(ps2)
otu_table(ps2)
# make a table of genera and counts
fac = factor(tax_table(ps2)[, "Genus"])
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
tab
df <- as.data.frame(tab)
df <- cbind("Genus" = rownames(df),df)
Family <- microbiome::map_levels(as.vector(df$Genus), "Genus", "Family", ps2)
df <- cbind(Family,df)
Order <- microbiome::map_levels(as.vector(df$Family), "Family", "Order", ps2)
df <- cbind(Order,df)
Class <- microbiome::map_levels(as.vector(df$Order), "Order", "Class", ps2)
df <- cbind(Class,df)
Phylum <- microbiome::map_levels(as.vector(df$Class), from="Class", to="Phylum", ps2)
df <- cbind(Phylum,df)
df <- df[order(df[,1], df[,2], df[,3], df[,4], df[,5]), ]
head(df)
file_out <- "16S_counts_MOCK_samples.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
## plot rel abundances at genus level
glom <- tax_glom(ps2, taxrank = 'Genus')
dat <- psmelt(glom)
dat$Genus <- as.character(dat$Genus)
p1 <- ggplot(dat, aes(x=Genus, y=Abundance)) + geom_boxplot() + coord_flip()
c_count = length(unique(dat$Genus))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Genus))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
scale_fill_manual(values=getPalette(c_count)) +
theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
print(p1); print(p2)
pdf("plots_rel_abundances_MOCK_samples.pdf", onefile = TRUE, width = 8, height = 6 ) # size in cm
print(p2)
dev.off()
###### END of exploring MOCK samples ###################
#### Filter taxa with MOCK samples removed ###########
## Remove MOCK samples
ps2 <- Object
sample_names(ps2)
ps2 <- subset_samples(ps2, !sample_names(ps2) %in% c("D6306","HM782","HM783"))
sample_names(ps2)
prevdf = apply(X = otu_table(ps2),
MARGIN = ifelse(taxa_are_rows(ps2), yes = 1, no = 2),
FUN = function(x){sum(x > 0)})
# Add total read counts to this data.frame
prevdf = data.frame(Prevalence = prevdf, TotalCounts = taxa_sums(ps2), tax_table(ps2))
plyr::ddply(prevdf, "Phylum", function(df1){
cbind(mean(df1$Prevalence),sum(df1$Prevalence), sum(df1$TotalCounts))})
# It can be seen that some phyla appear only in one or few samples
# and some have very low total counts
# look at phyla prevalence versus total abundance
prevdf1 = subset(prevdf, Phylum %in% get_taxa_unique(ps, "Phylum"))
ggplot(prevdf1, aes(TotalCounts, Prevalence / nsamples(ps),color=Phylum)) +
# Include a guess for parameter
geom_hline(yintercept = 0.05, alpha = 0.5, linetype = 2) + geom_point(size = 2, alpha = 0.7) +
scale_x_log10() + xlab("Total Abundance") + ylab("Prevalence [Frac. Samples]") +
facet_wrap(~Phylum) + theme(legend.position="none")
# Let's remove those phyla manually
remove_phyla <- c("Nitrospinae")
ps2 <- subset_taxa(ps2, !Phylum %in% remove_phyla)
# Which phyla?
unique(factor(tax_table(ps2)[, "Phylum"]))
# Let's remove OTUs that present only in 1 sample
# Define prevalence threshold as 5% of total samples
prevalenceThreshold = 0.05 * nsamples(ps)
prevalenceThreshold
# Execute prevalence filter, using `prune_taxa()` function
keepTaxa = rownames(prevdf1)[(prevdf1$Prevalence >= prevalenceThreshold)]
ps2 = prune_taxa(keepTaxa, ps)
# Let's check how many phyla and features we have now
ps2
length(get_taxa_unique(ps2, taxonomic.rank = "Phylum"))
# How many genera would be present after filtering?
length(get_taxa_unique(ps2, taxonomic.rank = "Genus"))
###### END of filtering taxa #######
###### Make files with counts by taxa levels ####
ps2 <- Object
# Create a factor corresponding to the taxa level
fac = factor(tax_table(ps2)[, "Phylum"])
# Tabulate the counts for each taxa in each sample
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
head(tab)[, 1:10]
df <- as.data.frame(tab)
df <- cbind(rownames(df),df)
head(df)[, 1:10]
colnames(df)[1] <- "Phylum"
file_out <- "counts_Phylum.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
## Class level ####
fac = factor(tax_table(ps2)[, "Class"])
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
head(tab)[, 1:10]
df <- as.data.frame(tab)
df <- cbind("Class" = rownames(df),df)
head(df)[, 1:10]
Phylum <- microbiome::map_levels(as.vector(df$Class), from="Class", to="Phylum", ps2)
df <- cbind(Phylum,df)
df <- df[order(df[,1], df[,2]), ]
file_out <- "counts_Class.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
## Order level ####
fac = factor(tax_table(ps2)[, "Order"])
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
head(tab)[, 1:10]
df <- as.data.frame(tab)
df <- cbind("Order" = rownames(df),df)
head(df)[, 1:10]
Class <- microbiome::map_levels(as.vector(df$Order), "Order", "Class", ps2)
df <- cbind(Class,df)
head(df)[, 1:10]
Phylum <- microbiome::map_levels(as.vector(df$Class), from="Class", to="Phylum", ps2)
df <- cbind(Phylum,df)
df <- df[order(df[,1], df[,2], df[,3]), ]
head(df)[, 1:10]
file_out <- "counts_Order.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
## Family level ####
fac = factor(tax_table(ps2)[, "Family"])
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
head(tab)[, 1:10]
df <- as.data.frame(tab)
df <- cbind("Family" = rownames(df),df)
head(df)[, 1:10]
Order <- microbiome::map_levels(as.vector(df$Family), "Family", "Order", ps2)
df <- cbind(Order,df)
head(df)[, 1:10]
Class <- microbiome::map_levels(as.vector(df$Order), "Order", "Class", ps2)
df <- cbind(Class,df)
head(df)[, 1:10]
Phylum <- microbiome::map_levels(as.vector(df$Class), from="Class", to="Phylum", ps2)
df <- cbind(Phylum,df)
df <- df[order(df[,1], df[,2], df[,3], df[,4]), ]
head(df)[, 1:10]
file_out <- "counts_Family.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
## Genus level ####
fac = factor(tax_table(ps2)[, "Genus"])
tab = apply(otu_table(ps2), MARGIN = 2, function(x) {
tapply(x, INDEX = fac, FUN = sum, na.rm = TRUE, simplify = TRUE)
})
head(tab)[, 1:10]
df <- as.data.frame(tab)
df <- cbind("Genus" = rownames(df),df)
head(df)[, 1:10]
Family <- microbiome::map_levels(as.vector(df$Genus), "Genus", "Family", ps2)
df <- cbind(Family,df)
head(df)[, 1:10]
Order <- microbiome::map_levels(as.vector(df$Family), "Family", "Order", ps2)
df <- cbind(Order,df)
head(df)[, 1:10]
Class <- microbiome::map_levels(as.vector(df$Order), "Order", "Class", ps2)
df <- cbind(Class,df)
head(df)[, 1:10]
Phylum <- microbiome::map_levels(as.vector(df$Class), from="Class", to="Phylum", ps2)
df <- cbind(Phylum,df)
df <- df[order(df[,1], df[,2], df[,3], df[,4], df[,5]), ]
head(df)[, 1:10]
file_out <- "counts_Genus.txt"
write.table(df, file_out, quote=F, sep="\t", row.names=F) #, col.names=NA)
###### END of making count files #########
###### Plot relative abundances ########
ps3 <- ps2
# transform counts to relative abundances
X <- ps3
ps2_rel = transform_sample_counts(X, function(x){x / sum(x)})
#### let's plot relative abundances for each sample by phylum
# agglomerate taxa
glom <- tax_glom(ps2_rel, taxrank = 'Phylum')
# create dataframe from phyloseq object
dat <- psmelt(glom)
# convert Phylum to a character vector from a factor
dat$Phylum <- as.character(dat$Phylum)
# group dataframe by Phylum, calculate median rel. abundance
medians <- plyr::ddply(dat, ~Phylum, function(x) c(median=median(x$Abundance)))
# find Phyla whose rel. abund. is less than 1%
rare <- medians[medians$median <= 0.01,]$Phylum
# change their name to "Other"
dat[dat$Phylum %in% rare,]$Phylum <- 'Other'
# boxplot
p1 <- ggplot(dat, aes(x=Phylum, y=Abundance)) + geom_boxplot() + coord_flip()
#bar-plot
c_count = length(unique(dat$Phylum))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(c_count, "Paired"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Phylum))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
scale_fill_manual(values=getPalette(c_count)) + theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
pdf("plots_rel_abundances_Phylum_level_collapsed.pdf", onefile = TRUE, width = 12, height = 6 ) # size in cm
print(p1); print(p2)
dev.off()
#### let's plot relative abundances for each phylum
x <- unique(dat$Phylum)
x <- x[x != "Other"]
phyla_list <- x
for (ph in phyla_list){
print(ph)
file_pdf = paste("plots_rel_abundances_Phylum_",ph,".pdf",sep="")
pdf(file_pdf, onefile = TRUE, width = 12, height = 6 ) # size in cm
#subset by Phylum
xp <- subset_taxa(ps2_rel, Phylum == ph)
glom <- tax_glom(xp, taxrank = 'Class')
dat <- psmelt(glom)
dat$Class <- as.character(dat$Class)
print(length(unique(dat$Class)))
#if (length(unique(dat$Class)) < 2) next; #nothing to plot for just one Class!
# if (length(unique(dat$Class)) > 20) {
# medians <- plyr::ddply(dat, ~Class, function(x) c(median=median(x$Abundance)))
# rare <- medians[medians$median <= 0.01,]$Class
# if (length(rare) > 1) dat[dat$Class %in% rare,]$Class <- 'Other'
# }
p1 <- ggplot(dat, aes(x=Class, y=Abundance)) + geom_boxplot() + coord_flip() + ggtitle(paste("Phylum = ", ph))
c_count = length(unique(dat$Class))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Class))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
ggtitle(paste("Phylum = ", ph)) +
scale_fill_manual(values=getPalette(c_count)) + theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
print(p1); print(p2)
# plot at Order level for each Class that other than unclassified
x <- unique(dat$Class)
x <- x[!grepl("unclassified", x)]
x <- x[x != "Other"]
class_list <- x
for (cl in class_list){
print(cl)
#subset by Phylum
xc <- subset_taxa(ps2_rel, Class == cl)
glom <- tax_glom(xc, taxrank = 'Order')
dat <- psmelt(glom)
dat$Order <- as.character(dat$Order)
print(length(unique(dat$Order)))
#if (length(unique(dat$Order)) < 2) next; #nothing to plot for just one Class!
# if (length(unique(dat$Order)) >20) {
# medians <- plyr::ddply(dat, ~Order, function(x) c(median=median(x$Abundance)))
# rare <- medians[medians$median <= 0.001,]$Order
# if (length(rare) > 1) dat[dat$Order %in% rare,]$Order <- 'Other'
# }
p1 <- ggplot(dat, aes(x=Order, y=Abundance)) + geom_boxplot() + coord_flip() +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl))
c_count = length(unique(dat$Order))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Order))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl)) +
scale_fill_manual(values=getPalette(c_count)) + theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
print(p1); print(p2)
# plot at Family level for each Order that other than unclassified
x <- unique(dat$Order)
x <- x[!grepl("unclassified", x)]
x <- x[x != "Other"]
order_list <- x
for (od in order_list){
print(od)
#subset by Phylum
xc <- subset_taxa(ps2_rel, Order == od)
glom <- tax_glom(xc, taxrank = 'Family')
dat <- psmelt(glom)
dat$Family <- as.character(dat$Family)
print(length(unique(dat$Family)))
#if (length(unique(dat$Family)) < 2) next; #nothing to plot for just one Class!
# if (length(unique(dat$Family)) >20) {
# medians <- plyr::ddply(dat, ~Family, function(x) c(median=median(x$Abundance)))
# rare <- medians[medians$median <= 0.001,]$Family
# if (length(rare) > 1) dat[dat$Family %in% rare,]$Family <- 'Other'
# }
p1 <- ggplot(dat, aes(x=Family, y=Abundance)) + geom_boxplot() + coord_flip() +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl, "; Order = ", od))
c_count = length(unique(dat$Family))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Family))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl, "; Order = ", od)) +
scale_fill_manual(values=getPalette(c_count)) +
theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
print(p1); print(p2)
# plot at Genus level for each Family that other than unclassified
x <- unique(dat$Family)
x <- x[!grepl("unclassified", x)]
x <- x[x != "Other"]
family_list <- x
for (fm in family_list){
print(fm)
xc <- subset_taxa(ps2_rel, Family == fm)
glom <- tax_glom(xc, taxrank = 'Genus')
dat <- psmelt(glom)
dat$Genus <- as.character(dat$Genus)
#if (length(unique(dat$Genus)) < 2) next; #nothing to plot for just one Class!
# if (length(unique(dat$Genus)) >20) {
# medians <- plyr::ddply(dat, ~Genus, function(x) c(median=median(x$Abundance)))
# rare <- medians[medians$median <= 0.001,]$Genus
# if (length(rare) > 1) dat[dat$Genus %in% rare,]$Genus <- 'Other'
# }
p1 <- ggplot(dat, aes(x=Genus, y=Abundance)) + geom_boxplot() + coord_flip() +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl, "; Order = ", od, "; Family = ", fm))
c_count = length(unique(dat$Genus))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
p2 <- ggplot(data=dat, aes(x=Sample, y=Abundance, fill=Genus))
p2 <- p2 + geom_bar(aes(), stat="identity", position="stack") +
ggtitle(paste("Phylum = ", ph, "; Class = ", cl, "; Order = ", od, "; Family = ", fm)) +
scale_fill_manual(values=getPalette(c_count)) +
theme(legend.position="bottom") +
guides(fill=guide_legend(nrow=5))
print(p1); print(p2)
}
}
}
dev.off()
}
######## END of plotting rel abundances ###########
########## Calculate beta-diversity ##############
# Must use counts!!!! (If needed, phyloseq converts to rel abundances)
#
# Beta-diversity shows how different every sample is from every other sample.
# Some metrics take abundance into account (i.e. diversity: Bray-Curtis,
# weighted UniFrac) and some only calculate based on presence-absence
# (i.e. richness: Jaccard, unweighted UniFrac).
# https://joey711.github.io/phyloseq/distance.html
theme_set(theme_bw()) # theme for ggplot with white background
dist_methods <- unlist(distanceMethodList)
print(dist_methods)
dist_methods <- c("unifrac", "wunifrac", "jsd", "bray", "canberra", "jaccard")
plist <- vector("list", length(dist_methods))
object <- ps3
level <- "Phylum"
object <- tax_glom(object, taxrank = level)
tax_table(object)[1:3, c("Phylum", "Class", "Order", "Family", "Genus")]
for( i in dist_methods ){
# Calculate distance matrix
iDist <- distance(object, method=i)
#save it to the file
x <- as.matrix(iDist)
file <- paste("dist_",i, "_level_", level, ".txt", sep="")
write.table(x, file, row.names = T, sep = "\t", quote = FALSE)
# Calculate ordination
iMDS <- ordinate(object, "MDS", distance=iDist)
## Make plot
# Don't carry over previous plot (if error, p will be blank)
p <- NULL
# Create plot, store as temp variable, p
p <- plot_ordination(object, iMDS, color="Group")
# Add title to each plot
p <- p + ggtitle(paste("MDS using distance method ", i, sep=""))
# Save the graphic to file.
plist[[i]] = p
}
length(unique(meta$Group)) # this is how many colors I need and where to place black or whatever color
my14colors <- c("red","brown","blue","grey50","magenta","cornflowerblue","cyan","green","black",
"forestgreen","darkorange","bisque","gold", "pink")
df <- ldply(plist, function(x) x$data)
names(df)[1] <- "distance"
p <- ggplot(df, aes(Axis.1, Axis.2, color=Group))
p <- p + geom_point(size=2, alpha=1.0) + facet_wrap(~distance, scales="free") +
scale_colour_manual(values=my14colors) +
ggtitle(paste("MDS on various distance metrics. Taxonomic level = ", level, sep=""))
print(p)
file <- paste("plots_beta_diversity_level_",level,".pdf", sep="")
pdf(file, onefile = TRUE, width = 10, height = 7 ) # size in cm
print(p)
dev.off()
########## Explore alpha-diversity metrics ##########
# http://joey711.github.io/phyloseq/plot_richness-examples
pdf("plots_alpha_diversity.pdf", onefile = TRUE, width = 8, height = 6 ) # size in cm
#plot_richness(ps, x="Group", color="Group", measures=c("Observed"))
plot_richness(ps, x="Group", measures=c("Observed"))
plot_richness(ps, x="Group", measures=c("Chao1"))
plot_richness(ps, x="Group", measures=c("ACE"))
plot_richness(ps, x="Group", measures=c("Simpson"))
plot_richness(ps, x="Group", measures=c("InvSimpson"))
plot_richness(ps, x="Group", measures=c("Fisher"))
dev.off()
######### Statistical analysis #################
# Alpha-diversity: check the distributions
par(mfrow = c(2, 2))
hist(meta$shannon, main="Shannon diversity", xlab="", breaks=10)
hist(1/meta$simpson, main="Inverse Simpson diversity", xlab="", breaks=10)
hist(meta$chao, main="Chao richness", xlab="", breaks=15)
hist(meta$ace, main="ACE richness", xlab="", breaks=15)
#check these distribution on normality
shapiro.test(meta$shannon)
shapiro.test(1/meta$simpson)
shapiro.test(meta$chao)
shapiro.test(meta$ace)
# It can be seen that chao and ace are normally distributed,
# therefore t-test can be run on comparing groups of samples by these metrics
# While for other, Kruskal-Wallis or Wilcoxon rank sum test should be used
#But as of now, I don't have any groups to compare.
# Detailed comparison using these metric is provided in
# https://rpubs.com/dillmcfarlan/R_microbiotaSOP