forked from tiermak/cuq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcurrent_gpu_demo.cu
137 lines (106 loc) · 3.32 KB
/
concurrent_gpu_demo.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <iostream>
#include <random>
#include <cuq.h>
#define THREADS_PER_BLOCK 64
using namespace std;
__global__
void vectorAdd(float * a, float * b, float * c, int iterations) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
for (int j = 0; j < iterations; j++)
c[i] = a[i] + b[i];
}
int done[8];
int SIZE = 16384;
//Define GPU task by inheriting from GPUTask
//In fact it should hold data for calculations and code for calculations defined in doWork() method
class VectorAddTask: public GPUTask {
public:
//constructor can be arbitrary
VectorAddTask(float * _h_a, float * _h_b, float * _h_c, int _iterations, int _id) {
id = _id;
iterations = _iterations;
h_a = _h_a;
h_b = _h_b;
h_c = _h_c;
}
//All GPU calculations should be done in this method
void doWork() {
int device;
cudaGetDevice(&device);
cout << "Device: " << device << ", running task: " << id << ", iterations: " << iterations << endl;
cudaMalloc(&d_a, SIZE * sizeof(float));
cudaMemcpy(d_a, h_a, SIZE * sizeof(float), cudaMemcpyHostToDevice);
cudaMalloc(&d_b, SIZE * sizeof(float));
cudaMemcpy(d_b, h_b, SIZE * sizeof(float), cudaMemcpyHostToDevice);
cudaMalloc(&d_c, SIZE * sizeof(float));
int blocksCount = (int)ceil((float)SIZE / THREADS_PER_BLOCK);
for (int i = 0; i < 1024; i++) {
vectorAdd<<<blocksCount,THREADS_PER_BLOCK>>>(d_a, d_b, d_c, iterations);
}
cudaMemcpy(h_c, d_c, SIZE * sizeof(float), cudaMemcpyDeviceToHost);
cout << "Device: " << device << ", task: " << id << " finished" << ", iterations: " << iterations << endl;
//increase number of finished tasks
done[device] += 1;
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
}
//Destructor is empty in this case
~VectorAddTask() {
}
private:
int iterations;
int id;
float * h_a;
float * h_b;
float * h_c;
float * d_a;
float * d_b;
float * d_c;
};
int pow(int a, int b) {
int res = 1;
for (int i = 0; i < b; i++)
res *= a;
return res;
}
int main(int argc, char *argv[]) {
int devicesCount;
if (argc <= 1)
devicesCount = 1;
else
devicesCount = std::stoi(argv[1]);
cout << "cuq demo on " << devicesCount << " devices..." << endl;
int tasksCount = 4096;
float * h_a = new float[SIZE];
float * h_b = new float[SIZE];
float * h_c = new float[SIZE];
for (int i = 0; i < SIZE; i++) {
h_a[i] = i;
h_b[i] = i + 100500;
}
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<int> dist (0,12);
GPUTask ** tasks = new GPUTask *[tasksCount];
for (int i = 0; i < tasksCount; i++) {
//randomize interations number of task
int randSize = SIZE / pow(2, dist(mt));
tasks[i] = new VectorAddTask(h_a, h_b, h_c, randSize, i);
}
for (int i = 0; i < 8; i++) {
done[i] = 0;
}
processTasks(tasks, tasksCount, devicesCount, /*resetDeviceAfterFinish =*/ true, /*deleteTasksAutomatically =*/ true);
//number of finished tasks per device should be more or less equal
for (int i = 0; i < devicesCount; i++) {
cout << "Device: " << i << ", done: " << done[i] << endl;
}
delete[] tasks;
delete[] h_a;
delete[] h_b;
delete[] h_c;
return 0;
}