Skip to content

Latest commit

 

History

History
 
 

mivisionx_validation_tool

MIT licensed Language grade: Python

MIVisionX Python ML Model Validation Tool

MIVisionX ML Model Validation Tool using pre-trained ONNX / NNEF / Caffe models to analyze, summarize, & validate.

Pre-trained models in ONNX, NNEF, & Caffe formats are supported by MIVisionX. The app first converts the pre-trained models to AMD Neural Net Intermediate Representation (NNIR), once the model has been translated into AMD NNIR (AMD's internal open format), the Optimizer goes through the NNIR and applies various optimizations which would allow the model to be deployed on to target hardware most efficiently. Finally, AMD NNIR is converted into OpenVX C code, which is compiled and wrapped with a python API to run on any targeted hardware.

  • MIVisionX Validation Tool - Processing Images

  • MIVisionX Validation Tool - Processing Images Complete

  • MIVisionX Validation Tool - Results

Analyzer Index

Prerequisites

	pip install pyqtgraph
  • Export Path & Libraries required
	export PATH=$PATH:/opt/rocm/mivisionx/bin
	export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib

NOTE: To get the best performance from the validation toolkit use the RPP Develop Branch

  • Install OpenMP
sudo apt-get install libomp-dev
  • Set number of OpenMP Threads
export OMP_NUM_THREADS=<number of threads to use>

Use MIVisionX Docker

MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

Docker with display option

sudo docker pull mivisionx/ubuntu-18.04:latest
xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.Xauthority --volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-18.04:latest
  • Test display with MIVisionX sample
export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Usage

Command Line Interface (CLI)

usage: python mivisionx_validation_tool.py 	[-h] 
                             	       		--model_format MODEL_FORMAT 
                                       		--model_name MODEL_NAME 
                                       		--model MODEL 
                                       		--model_input_dims MODEL_INPUT_DIMS 
                                       		--model_output_dims MODEL_OUTPUT_DIMS
											--model_batch_size MODEL_BATCH_SIZE 
											--rali_mode RALI_MODE
                                       		--label LABEL 
                                       		--output_dir OUTPUT_DIR 
                                       		--image_dir IMAGE_DIR
                                       		[--image_val IMAGE_VAL] 
                                       		[--hierarchy HIERARCHY]
                                       		[--add ADD] 
                                       		[--multiply MULTIPLY]
				       						[--fp16 FP16]
                                       		[--replace REPLACE] 
                                       		[--verbose VERBOSE]

Usage help

  -h, --help            show this help message and exit
  --model_format        pre-trained model format, options:caffe/onnx/nnef [required]
  --model_name          model name                                        [required]
  --model               pre_trained model file/folder                     [required]
  --model_input_dims    c,h,w - channel,height,width                      [required]
  --model_output_dims   c,h,w - channel,height,width                      [required]
  --model_batch_size    n - batch size                                    [required]
  --rali_mode           rali mode (1/2/3)                                 [required]
  --label               labels text file                                  [required]
  --output_dir          output dir to store ADAT results                  [required]
  --image_dir           image directory for analysis                      [required]
  --image_val           image list with ground truth                      [optional]
  --hierarchy           AMD proprietary hierarchical file                 [optional]
  --add                 input preprocessing factor      [optional - default:[0,0,0]]
  --multiply            input preprocessing factor      [optional - default:[1,1,1]]
  --fp16                quantize model to FP16 		     [optional - default:no]
  --replace             replace/overwrite model              [optional - default:no]
  --verbose             verbose                              [optional - default:no]

Graphical User Interface (GUI)

usage: python mivisionx_validation_tool.py

Supported Pre-Trained Model Formats

  • Caffe
  • NNEF
  • ONNX

Samples

Sample 1 - Using Pre-Trained ONNX Model

Run SqueezeNet on sample images

  • Step 1: Clone MIVisionX Validation Tool Project
	cd && mkdir sample-1 && cd sample-1
	git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git
**Note:**
  • MIVisionX needs to be pre-installed
  • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
  • ONNX model conversion requires ONNX install using pip install onnx
	wget https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
	tar -xvf squeezenet.tar.gz

Note: pre-trained model - squeezenet/model.onnx

  • Step 3: Use the command below to run the inference validation tool

    • View inference validation tool usage

      cd ~/sample-1/MIVisionX-validation-tool/
      export PATH=$PATH:/opt/rocm/mivisionx/bin
      export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
      python mivisionx_validation_tool.py -h
      
    • Run SqueezeNet Inference validation tool

      python mivisionx_validation_tool.py --model_format onnx --model_name SqueezeNet --model ~/sample-1/squeezenet/model.onnx --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rali_mode 1 --label ./sample/labels.txt --output_dir ~/sample-1/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
      

Sample 2 - Using Pre-Trained Caffe Model

Run VGG 16 on sample images

  • Step 1: Clone MIVisionX Inference Validation Tool Project
	cd && mkdir sample-2 && cd sample-2
	git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git

Note:

  • MIVisionX needs to be pre-installed
  • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
	wget http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
  • Step 3: Use the command below to run the inference validation tool

    • View inference validation tool usage

      cd ~/sample-2/MIVisionX-validation-tool/
      export PATH=$PATH:/opt/rocm/mivisionx/bin
      export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
      python mivisionx_validation_tool.py -h
      
    • Run VGGNet-16 Inference Validation Tool

      python mivisionx_validation_tool.py --model_format caffe --model_name VggNet-16-Caffe --model ~/sample-2/VGG_ILSVRC_16_layers.caffemodel --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rali_mode 1 --label ./sample/labels.txt --output_dir ~/sample-2/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
      

Sample 3 - Using Pre-Trained NNEF Model

Run VGG 16 on sample images

  • Step 1: Clone MIVisionX Inference Validation Tool Project
	cd && mkdir sample-3 && cd sample-3
	git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git

Note:

  • MIVisionX needs to be pre-installed
  • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
  • NNEF model conversion requires NNEF python parser installed
  • Step 2: Download pre-trained VGG 16 NNEF model
	mkdir ~/sample-3/vgg16
	cd ~/sample-3/vgg16
	wget https://sfo2.digitaloceanspaces.com/nnef-public/vgg16.onnx.nnef.tgz
  • Step 3: Use the command below to run the inference analyzer

    • View inference validation tool usage

      cd ~/sample-3/MIVisionX-validation-tool/
      export PATH=$PATH:/opt/rocm/mivisionx/bin
      export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
      python mivisionx_validation_tool.py -h
      
    • Run VGGNet-16 Inference Validation Tool

      python mivisionx_validation_tool.py --model_format nnef --model_name VggNet-16-NNEF --model ~/sample-3/vgg16/ --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rali_mode 1 --label ./sample/labels.txt --output_dir ~/sample-3/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
      
  • Preprocessing the model: Use the --add/--multiply option to preprocess the input images

      python mivisionx_validation_tool.py --model_format nnef --model_name VggNet-16-NNEF --model ~/sample-3/vgg16/ --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rali_mode 1 --label ./sample/labels.txt --output_dir ~/sample-3/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes --add [-2.1179,-2.0357,-1.8044] --multiply [0.0171,0.0175,0.0174]