-
Notifications
You must be signed in to change notification settings - Fork 0
/
Measuring hexagons_FIJI1.52n.ijm
758 lines (649 loc) · 27.7 KB
/
Measuring hexagons_FIJI1.52n.ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
// BIC_Measuring Hexagons
// =======================================================
// Copyright 2018 BioImaging Center, University of Konstanz
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. If data produced
// with this program or a derivative of this program is used for
// publications the original authors should be acknowledged appropriately.
//
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// =======================================================
//
// Uses "FeatureJ Laplacian" written by Erik Meijering
// <https://imagej.net/ImageScience>
//
// =======================================================
//
// BioImaging Center, University of Konstanz <[email protected]>
// Martin Stöckl <[email protected]>
//
// =======================================================
/* returns first index of element in an array: returns -1 if element not found */
function findIndex(array, element) {
for (i=0; i < lengthOf(array); i++) {
if (array[i] == element) {
return i;
}
}
return -1;
}
/* distance between two points, pythagorean theorem */
function calculateDistance(x0, y0, x1, y1) {
return sqrt(pow(x0 - x1, 2) + pow(y0 - y1, 2));
}
/* helper function, returns an array of angles between an array of points and a common vertex */
function calculateAngles(x_corners, y_corners, x_vertex, y_vertex) {
angles = newArray(x_corners.length);
for (c = 0; c < x_corners.length; c++){
angle = calculateAngle(x_corners[c], y_corners[c], x_corners[(c + 1) % x_corners.length], y_corners[(c + 1) % x_corners.length], x_vertex, y_vertex);
angles[c] = angle;
}
return angles;
}
/* calculates the angle between two points and a vertex point, law of cosines */
function calculateAngle(x0, y0, x1, y1, x_vertex, y_vertex) {
length0 = calculateDistance(x0, y0, x_vertex, y_vertex);
length1 = calculateDistance(x1, y1, x_vertex, y_vertex);
length_opposite = calculateDistance(x0, y0, x1, y1);
angle_cos = (pow(length0, 2) + pow(length1, 2) - pow(length_opposite, 2)) / (2 * length0 * length1);
return acos(angle_cos) * 180 / PI;
}
/* sum of intensities along a profile, returns an array of sums for given angles */
// title --- image title
// x_center, y_center --- origin point of profile
// radius --- length of profile
// start_angle, stop_angle --- angle values (in degrees) between which the profiles are analysed
// normalize --- return real or normalized values (between 0 and 1)
function getProfilesAsArray(title, x_center, y_center, radius, start_angle, stop_angle, normalize) {
profile_sums = newArray();
if (stop_angle < start_angle) {
stop_angle += 360;
}
selectImage(title);
for (j = start_angle; j < stop_angle; j++) {
x = x_center + radius * cos(j * PI / 180);
y = y_center + radius * sin(j * PI / 180);
makeLine(x_center, y_center, x, y);
profile = getProfile();
sum_profile = 0;
for (n = 0; n < lengthOf(profile); n++) {
sum_profile += profile[n];
}
profile_sums = Array.concat(profile_sums, sum_profile);
}
/* to increase the response average number of angles given by SAMPLING_WINDOW */
resampled_sums = newArray();
for (slice_start = 0; slice_start <= (profile_sums.length - SAMPLING_WINDOW); slice_start += SAMPLING_WINDOW) {
current_slice = Array.slice(profile_sums, slice_start, slice_start + SAMPLING_WINDOW);
Array.getStatistics(current_slice, VOID, VOID, slice_mean, VOID);
resampled_sums = Array.concat(resampled_sums, slice_mean);
}
if (!normalize) {
return resampled_sums;
}
else {
normalized_sums = newArray(resampled_sums.length);
Array.getStatistics(resampled_sums, min_sum, max_sum, VOID, VOID);
for (s = 0; s < resampled_sums.length; s++) {
normalized_sums[s] = (resampled_sums[s] - min_sum) / (max_sum - min_sum);
}
return normalized_sums;
}
}
/* calculate edge distances from center, returns an array of distances */
// title --- image title
// x_center, y_center --- origin point of profile
// radius --- length of profile
// normalize --- return real or normalized values (between 0 and 1)
function getEdgesAsArray(title, x_center, y_center, radius, start_angle, stop_angle, normalize) {
profile_edges = newArray();
if (stop_angle < start_angle) {
stop_angle += 360;
}
selectImage(title);
for (j = start_angle; j < stop_angle; j++) {
/* create end point outside the hexagon */
x = x_center + radius * cos(j * PI / 180);
y = y_center + radius * sin(j * PI / 180);
/* get coordinate of edge pixel and calculate distance from center */
edge_hit = refineCornerDistance(x_center, y_center, x, y);
edge_distance = calculateDistance(x_center, y_center, edge_hit[0], edge_hit[1]);
profile_edges = Array.concat(profile_edges, edge_distance);
}
/* to increase the response average number of angles given by SAMPLING_WINDOW */
resampled_sums = newArray();
for (slice_start = 0; slice_start <= (profile_edges.length - SAMPLING_WINDOW); slice_start += SAMPLING_WINDOW) {
current_slice = Array.slice(profile_edges, slice_start, slice_start + SAMPLING_WINDOW);
Array.getStatistics(current_slice, VOID, VOID, slice_mean, VOID);
resampled_sums = Array.concat(resampled_sums, slice_mean);
}
if (!normalize) {
return resampled_sums;
}
else {
normalized_sums = newArray(resampled_sums.length);
Array.getStatistics(resampled_sums, min_sum, max_sum, VOID, VOID);
for (s = 0; s < resampled_sums.length; s++) {
normalized_sums[s] = (resampled_sums[s] - min_sum) / (max_sum - min_sum);
}
return normalized_sums;
}
}
/* returns local maxima present in an array_int */
// find_central --- if true: return only one maximum, exclude maxima at array boundaries, returns -1 if no central maximum
function detectMaxima(array_int, find_central) {
hits = newArray();
current_value = array_int[0];
/* determine a possible max at index 0 */
if (array_int[0] < array_int[1]) {
goes_up = true;
}
else {
goes_up = false;
hits = Array.concat(hits, current_value);
}
/* after a max, values start to decrease */
for (i = 1; i < lengthOf(array_int); i++) {
if (array_int[i] < current_value && goes_up){
goes_up = false;
hits = Array.concat(hits, current_value);
}
if (array_int[i] >= current_value) {
goes_up = true;
}
current_value = array_int[i];
}
/* determine a possible max at the last index */
if (goes_up) {
hits = Array.concat(hits, current_value);
}
/* find the indices for the max intensities */
indices_found = newArray(lengthOf(hits));
last_index = -1;
for (h = 0; h < lengthOf(hits); h++) {
current_slice = Array.slice(array_int, last_index + 1);
indices_found[h] = findIndex(current_slice, hits[h]) + last_index + 1;
last_index = indices_found[h];
}
/* calculate distances between maxima */
hit_distances = newArray(lengthOf(hits));
for (h = 0; h < lengthOf(hits) - 1; h++) {
hit_distances[h] = indices_found[h + 1] - indices_found[h];
}
hit_distances[lengthOf(hits) - 1] = array_int.length - indices_found[lengthOf(hits) - 1] + indices_found[0];
/* For debugging: Print identified maxima to log */
//print("Detected maxima:");
//for (t = 0; t < lengthOf(hits); t++) {
// print("Int " + hits[t] + " Index " + indices_found[t], " Distance " + hit_distances[t]);
//}
/* return only the highest local max */
// maxima closer than IGNORE_LIMIT to the array boundaries are ignored
if (find_central) {
central_maximum = newArray();
central_max_int = newArray();
for (m = 0; m < indices_found.length; m++) {
if (indices_found[m] > IGNORE_LIMIT && ((array_int.length - indices_found[m]) > IGNORE_LIMIT)) {
central_maximum = Array.concat(central_maximum, indices_found[m]);
central_max_int = Array.concat(central_max_int, hits[m]);
}
}
if (central_maximum.length > 0) {
Array.getStatistics(central_max_int, min, max_int, mean, stdDev);
max_int_index = findIndex(central_max_int, max_int);
return central_maximum[max_int_index];
}
else {
return -1;
}
}
/* identify close maxima with a separation smaller than MAX_HITDISTANCE and group them into one (indices are averaged) */
separated_indices = newArray();
separated_intensities = newArray();
grouped_indices = newArray();
grouped_intensities = newArray();
/* if max distance smaller MAX_HITDISTANCE add to group, else add to and average current group, add to separated max, initialize new group, if no current group add directly to separated max */
for (h = 0; h < lengthOf(hits); h++) {
if (hit_distances[h] <= MAX_HITDISTANCE) {
grouped_indices = Array.concat(grouped_indices, indices_found[h]);
grouped_intensities = Array.concat(grouped_intensities, hits[h]);
}
else if (hit_distances[h] > MAX_HITDISTANCE && lengthOf(grouped_indices) > 0) {
grouped_indices = Array.concat(grouped_indices, indices_found[h]);
grouped_intensities = Array.concat(grouped_intensities, hits[h]);
Array.getStatistics(grouped_indices, VOID, VOID, mean_index, VOID);
separated_indices = Array.concat(separated_indices, mean_index);
Array.getStatistics(grouped_intensities, VOID, VOID, mean_int, VOID);
separated_intensities = Array.concat(separated_intensities, mean_int);
grouped_indices = newArray();
grouped_intensities = newArray();
}
else {
separated_indices = Array.concat(separated_indices, indices_found[h]);
separated_intensities = Array.concat(separated_intensities, hits[h]);
}
}
/* clean up grouped max, check if max across array boundaries have to be grouped, add to separated max */
if (lengthOf(grouped_indices) > 0) {
if (hit_distances[h - 1] > MAX_HITDISTANCE) {
Array.getStatistics(grouped_indices, VOID, VOID, mean_index, VOID);
separated_indices = Array.concat(separated_indices, mean_index);
Array.getStatistics(grouped_intensities, VOID, VOID, mean_int, VOID);
separated_intensities = Array.concat(separated_intensities, mean_int);
}
else {
if (lengthOf(separated_indices) > 0) {
grouped_indices = Array.concat(grouped_indices, separated_indices[0] + 360 / SAMPLING_WINDOW);
grouped_intensities = Array.concat(grouped_intensities, separated_intensities[0]);
Array.getStatistics(grouped_indices, VOID, VOID, mean_index, VOID);
if (mean_index >= 360 / SAMPLING_WINDOW) {
mean_index -= 360 / SAMPLING_WINDOW;
}
separated_indices = Array.concat(separated_indices, mean_index);
Array.getStatistics(grouped_intensities, VOID, VOID, mean_int, VOID);
separated_intensities = Array.concat(separated_intensities, mean_int);
separated_indices = Array.slice(separated_indices, 1);
separated_intensities = Array.slice(separated_intensities, 1);
}
else {
Array.getStatistics(grouped_indices, VOID, VOID, mean_index, VOID);
separated_indices = Array.concat(separated_indices, mean_index);
Array.getStatistics(grouped_intensities, VOID, VOID, mean_index, VOID);
separated_intensities = Array.concat(separated_intensities, mean_index);
}
}
}
/* For debugging: Print identified maxima to log */
//print("After separation:");
//for (t = 0; t < lengthOf(separated_indices); t++) {
// print("Int " + separated_intensities[t] + " Index " + separated_indices[t]);
//}
return separated_indices;
}
/* for each corner angle, check if an opposite corner angle is there, if not add one */
// angles --- array of corner angles
function probeOppositeAngles(angles) {
opp_angles = newArray();
for (a = 0; a < angles.length; a++) {
if (angles[a] >= 180 / SAMPLING_WINDOW) {
opp_angle = angles[a] - 180 / SAMPLING_WINDOW;
}
else {
opp_angle = angles[a] + 180 / SAMPLING_WINDOW;
}
/* check if there is already an angle closer than MIN_OPP_ANGLE to the new opposite angle */
angle_close = false;
for (av = 0; av < angles.length; av++) {
if (abs(angles[av] - opp_angle) < MIN_OPP_ANGLE / SAMPLING_WINDOW) {
angle_close = true;
}
}
if (!angle_close) {
opp_angles = Array.concat(opp_angles, opp_angle);
}
}
angles = Array.concat(angles, opp_angles);
Array.sort(angles);
return angles;
}
/* refine edge distance from center, for a single point */
// x_center, y_center --- origin point of profile
// x_initial, y_initial --- initial point coordinates
function refineCornerDistance(x_center, y_center, x_initial, y_initial) {
/* get angle from center, extend search range by 7 pixel */
angle = atan2(y_initial - y_center, x_initial - x_center);
x_ext = cos(angle) * 7;
y_ext = sin(angle) * 7;
x_extended = x_initial + x_ext;
y_extended = y_initial + y_ext;
/* identify step in intesities along a profile, by discrete differentitaion in sample window given by DIFFERENTIATION_WINDOW */
selectImage("Working");
makeLine(x_center, y_center, x_extended, y_extended);
profile = getProfile();
x_points = Array.getSequence(DIFFERENTIATION_WINDOW);
limit = floor(DIFFERENTIATION_WINDOW / 2);
diffed_profile = newArray(profile.length);
for (w = limit; w < profile.length - limit; w++) {
temp_array = Array.slice(profile, w - limit, w + limit + 1);
Fit.doFit("Straight Line", x_points, temp_array);
diffed_profile[w] = Fit.p(1);
}
/* identify index with maximum slope */
Array.getStatistics(diffed_profile, min, max_differential, mean, stdDev);
corner_dist = findIndex(diffed_profile, max_differential);
/* calculate refined coordinates */
coord_mod = newArray(2);
coord_mod[0] = cos(angle) * corner_dist + x_center;
coord_mod[1] = sin(angle) * corner_dist + y_center;
return coord_mod;
}
/* calculates angles between adjacent points from an sorted array of corner points, eliminate corners with an angle above MAX_ALLOWED_ANGLE */
// corners --- array of corner coordinates [[x_coords] + [y_coords]]
function removeCornersOnEdgesAngleLimit(corners) {
x_corners_new = newArray();
y_corners_new = newArray();
x_corners = Array.slice(corners, 0, corners.length / 2);
y_corners = Array.slice(corners, corners.length / 2);
for (c = 0; c < x_corners.length; c++) {
x0 = x_corners[c];
y0 = y_corners[c];
x_v = x_corners[(c + 1) % x_corners.length];
y_v = y_corners[(c + 1) % y_corners.length];
x1 = x_corners[(c + 2) % x_corners.length];
y1 = y_corners[(c + 2) % y_corners.length];
corner_angle = calculateAngle(x0, y0, x1, y1, x_v, y_v);
if (corner_angle <= MAX_ALLOWED_ANGLE) {
x_corners_new = Array.concat(x_corners_new, x_v);
y_corners_new = Array.concat(y_corners_new, y_v);
}
}
corners_new = Array.concat(x_corners_new, y_corners_new);
return corners_new;
}
/* calculates angles between adjacent points from an sorted array of corner points, return the six corners with smallest angles */
// if not at least seven corners are given, fall back to removeCornersOnEdgesAngleLimit
// corners --- array of corner coordinates [[x_coords] + [y_coords]]
function removeCornersOnEdges(corners) {
if (corners.length <= 12) {
corners_new = removeCornersOnEdgesAngleLimit(corners);
}
else {
x_corners_new = newArray(6);
y_corners_new = newArray(6);
x_corners = Array.slice(corners, 0, corners.length / 2);
y_corners = Array.slice(corners, corners.length / 2);
angles = newArray();
corner_indices = newArray(6);
for (c = 0; c < x_corners.length; c++) {
x0 = x_corners[c];
y0 = y_corners[c];
x_v = x_corners[(c + 1) % x_corners.length];
y_v = y_corners[(c + 1) % y_corners.length];
x1 = x_corners[(c + 2) % x_corners.length];
y1 = y_corners[(c + 2) % y_corners.length];
corner_angle = calculateAngle(x0, y0, x1, y1, x_v, y_v);
angles = Array.concat(angles, corner_angle);
}
sorted_angles = Array.copy(angles);
Array.sort(sorted_angles);
for (i = 0; i < 6; i++) {
corner_indices[i] = (findIndex(angles, sorted_angles[i]) + 1) % x_corners.length;
}
Array.sort(corner_indices);
for (i = 0; i < 6; i++) {
x_corners_new[i] = x_corners[corner_indices[i]];
y_corners_new[i] = y_corners[corner_indices[i]];
}
corners_new = Array.concat(x_corners_new, y_corners_new);
}
return corners_new;
}
/* if less than 6 corners are specified, find a corner between the points forming the largest angle */
// initial_corners --- array of corner coordinates [[x_coords] + [y_coords]]
function addCorners(initial_corners) {
/* to avoid infinite looping restrict restrict loop number to MAX_CORNER_ADD_CYCLE */
cycle_counter = 0;
corners = initial_corners;
while (corners.length < 12 && cycle_counter < MAX_CORNER_ADD_CYCLE) {
x_corners = Array.slice(corners, 0, corners.length / 2);
y_corners = Array.slice(corners, corners.length / 2);
print(i + " adding corner found only " + x_corners.length);
/* identify thw two points forming the largest angle with the center */
angles = newArray(x_corners.length);
for (c = 0; c < x_corners.length; c++) {
angle = calculateAngle(x_corners[c], y_corners[c], x_corners[(c + 1) % x_corners.length], y_corners[(c + 1) % x_corners.length], x_c, y_c);
angle += PI;
angle *= 180 / PI;
angles[c] = angle;
}
Array.getStatistics(angles, min, max_angle, mean, stdDev);
max_index = findIndex(angles, max_angle);
/* calculate start and stop angles and try to find a new max */
angle0 = atan2(y_corners[max_index] - y_c, x_corners[max_index] - x_c);
angle1 = atan2(y_corners[(max_index + 1) % x_corners.length] - y_c, x_corners[(max_index + 1) % x_corners.length] - x_c);
angle0 += PI;
angle0 *= 180 / PI;
angle1 += PI;
angle1 *= 180 / PI;
new_anglesweep = getProfilesAsArray("Particles", x_c, y_c, radius, angle0, angle1, false);
new_max = detectMaxima(new_anglesweep, true);
/* detect new edge point at that angle and insert it into the initial corner array */
x_initial_new = x_c - radius * cos((angle0 + new_max * SAMPLING_WINDOW) * PI / 180);
y_initial_new = y_c - radius * sin((angle0 + new_max * SAMPLING_WINDOW) * PI / 180);
corner_new = refineCornerDistance(x_c, y_c, x_initial_new, y_initial_new);
x_corners_new = corner_new[0];
y_corners_new = corner_new[1];
x_corners_low = Array.slice(x_corners, 0, max_index + 1);
x_corners_high = Array.slice(x_corners, max_index + 1);
x_corners_low = Array.concat(x_corners_low, x_corners_new);
x_corners = Array.concat(x_corners_low, x_corners_high);
y_corners_low = Array.slice(y_corners, 0, max_index + 1);
y_corners_high = Array.slice(y_corners, max_index + 1);
y_corners_low = Array.concat(y_corners_low, y_corners_new);
y_corners = Array.concat(y_corners_low, y_corners_high);
corners = Array.concat(x_corners, y_corners);
/* check if new point is on an edge */
corners = removeCornersOnEdges(corners);
cycle_counter++;
}
return corners;
}
/* calculate are of the hexagon from the area of the six triangular segments */
// x_c, y_c --- center coordinates
// x_corners, y_corners --- arrays containing the corner coordinates
function calculateArea(x_c, y_c, x_corners, y_corners) {
total_area = 0;
/* a, b, c --- side lengths of the triangle */
for (corner = 0; corner < 6; corner++) {
x0 = x_corners[corner];
y0 = y_corners[corner];
x1 = x_corners[(corner + 1) % 6];
y1 = y_corners[(corner + 1) % 6];
a = calculateDistance(x0, y0, x1, y1);
b = calculateDistance(x0, y0, x_c, y_c);
c = calculateDistance(x_c, y_c, x1, y1);
/* Heron's formula */
s = (a + b + c) / 2;
total_area += sqrt(s * (s - a) * (s - b) * (s - c));
}
return total_area * pow(pixel_size, 2);
}
/* calculate how much the hexagon is squeezed */
// angles --- angles between adjacent points, center as vertex
function calculateExcentricity(angles) {
opp_angles = newArray(3);
for (a = 0; a < 3; a++) {
opp_angles[a] = angles[a] + angles[(a + 3) % 6];
}
Array.getStatistics(opp_angles, min_angle, max_angle, VOID, VOID);
return min_angle / max_angle;
}
/* calculate how much the hexagon is squeezed */
// distances --- distances between adjacent points
function calculateExcentricityfromDistances(distances) {
excentricities = newArray(3);
for (r = 0; r < 3; r++) {
two_adjacent_points = (distances[r] + distances[r + 1] + distances[(r + 3)] + distances[(r + 4) % 6]) / 4;
next_point = (distances[r + 2] + distances[(r + 5) % 6]) / 2;
excentricities[r] = two_adjacent_points / next_point;
}
Array.getStatistics(excentricities, min_excentricity, VOID, VOID, VOID);
return min_excentricity;
}
/* calculate how different alternate angles are */
// angles --- angles between adjacent points, center as vertex
function calculateIrregularity(angles) {
angle_sum0 = angles[0] + angles[2] + angles[4];
angle_sum1 = angles[1] + angles[3] + angles[5];
if (angle_sum0 < angle_sum1) {
return angle_sum0 / angle_sum1;
}
else {
return angle_sum1 / angle_sum0;
}
}
/* calculate how different alternate angles are */
// distances --- distances between adjacent points
function calculateIrregularityfromDistances(distances) {
distance_sum0 = distances[0] + distances[2] + distances[4];
distance_sum1 = distances[1] + distances[3] + distances[5];
if (distance_sum0 < distance_sum1) {
return distance_sum0 / distance_sum1;
}
else {
return distance_sum1 / distance_sum0;
}
}
/* Main starts here */
// GLOBAL STATICS used by functions, see above
SAMPLING_WINDOW = 5;
MAX_HITDISTANCE = 4;
DIFFERENTIATION_WINDOW = 5;
IGNORE_LIMIT = 4;
MAX_ALLOWED_ANGLE = 150;
MIN_OPP_ANGLE = 20;
MAX_CORNER_ADD_CYCLE = 5;
/* Preparation and edge detection (Laplacian) */
run("Set Measurements...", "area mean min centroid feret's redirect=None decimal=3");
image_title = getTitle();
image_path = getInfo("image.directory");
getDimensions(image_width, image_height, channels, slices, frames);
getPixelSize(pixelsize_unit, pixel_size, VOID, VOID);
run("Duplicate...", "title=LabeledImage");
run("Duplicate...", "title=Working");
run("Bandpass Filter...", "filter_large=50 filter_small=5 suppress=None tolerance=5 autoscale saturate");
run("FeatureJ Laplacian", "compute smoothing=5 detect");
setAutoThreshold("Default dark no-reset");
run("Analyze Particles...", "size=20-Infinity circularity=0.60-1.00 display clear include add");
close("Working Laplacian zero-crossings");
selectImage("LabeledImage");
run("RGB Color");
newImage("Particles", "8-bit black", image_width, image_height, 1);
setColor(255, 255, 255);
roiManager("Deselect");
roiManager("fill");
/* Save centroid and feret points for each detected hexagon */
x_centroids = newArray();
y_centroids = newArray();
x_ferets = newArray();
y_ferets = newArray();
number_particles = nResults;
for (i = 0 ; i < number_particles; i++) {
x_centroids = Array.concat(x_centroids, getResult("X", i) / pixel_size);
y_centroids = Array.concat(y_centroids, getResult("Y", i) / pixel_size);
/* In ImageJ version 1.52n "Analyze Particles ..." returns FeretX and FeretY in pixel coordinates */
//x_ferets = Array.concat(x_ferets, getResult("FeretX", i) / pixel_size);
//y_ferets = Array.concat(y_ferets, getResult("FeretY", i) / pixel_size);
x_ferets = Array.concat(x_ferets, getResult("FeretX", i));
y_ferets = Array.concat(y_ferets, getResult("FeretY", i));
}
/* identifying corners for each hexagon */
run("Clear Results");
result_counter = 0;
for (i = 0; i < number_particles; i++) {
x_f = x_ferets[i];
y_f = y_ferets[i];
x_c = x_centroids[i];
y_c = y_centroids[i];
radius = calculateDistance(x_c, y_c, x_f, y_f);
/* measure the edge distance from the center for all angles */
edge_profiles = getEdgesAsArray("Working", x_c, y_c, radius, 0, 360, true);
/* measure in the masked image the intensity for all angles */
particle_profiles = getProfilesAsArray("Particles", x_c, y_c, radius, 0, 360, true);
weighted_profiles = newArray(particle_profiles.length);
for (v = 0; v < particle_profiles.length; v++) {
weighted_profiles[v] = particle_profiles[v] + edge_profiles[v];
}
print("Data for image " + i);
/* get maxima of weighted profiles --> corners */
angle_values = detectMaxima(weighted_profiles, false);
Array.sort(angle_values);
/* add a corner on the opposite side if there is none */
angle_values = probeOppositeAngles(angle_values);
/* calculate corner coordinates and refine them */
corners = newArray(angle_values.length * 2);
for (c = 0; c < angle_values.length; c++) {
x_cor = x_c + radius * cos(angle_values[c] * SAMPLING_WINDOW * PI / 180);
y_cor = y_c + radius * sin(angle_values[c] * SAMPLING_WINDOW * PI / 180);
corner = refineCornerDistance(x_c, y_c, x_cor, y_cor);
corners[c] = corner[0];
corners[c + angle_values.length] = corner[1];
}
/* create Convex Hull, remove corners inside hexagons */
x_corners = Array.slice(corners, 0, corners.length / 2);
y_corners = Array.slice(corners, corners.length / 2);
makeSelection("polygon", x_corners, y_corners);
run("Convex Hull");
getSelectionCoordinates(x_corners, y_corners);
corners = Array.concat(x_corners, y_corners);
/* remove corners from edges */
corners = removeCornersOnEdges(corners);
/* if less than 6 corners are identified try to add one in the largest gap */
if (corners.length < 12) {
corners = addCorners(corners);
}
/* annotate current hexagon */
selectImage("LabeledImage");
setColor(255, 0, 0);
fillRect(x_c - 1, y_c - 1, 3, 3);
drawString(i, x_c + 5, y_c + 5);
if (corners.length == 12) {
setColor(0, 255, 0);
}
else {
setColor(255, 0, 0);
}
for (c = 0; c < corners.length / 2; c++) {
fillRect(corners[c] - 1, corners[c + corners.length / 2] - 1, 3, 3);
}
/* if six corners have been found, calculate hexagon area, excentricity and irregularity */
if (corners.length == 12) {
point_distances = newArray(6);
x_corners = Array.slice(corners, 0, corners.length / 2);
y_corners = Array.slice(corners, corners.length / 2);
for (p = 0; p < 6; p++) {
point_distances[p] = calculateDistance(x_corners[p], y_corners[p], x_corners[(p + 1) % 6], y_corners[(p + 1) % 6]);
}
angles = calculateAngles(x_corners, y_corners, x_c, y_c);
setResult("Hexagon #", result_counter, i);
setResult("Centroid X", result_counter, x_c * pixel_size);
setResult("Centroid Y", result_counter, y_c * pixel_size);
area = calculateArea(x_c, y_c, x_corners, y_corners);
setResult("Area", result_counter, area);
print("Area in " + pixelsize_unit + "^2: " + area);
excentricity_angles = calculateExcentricity(angles);
setResult("Excentricity_angles", result_counter, excentricity_angles);
excentricity_distances = calculateExcentricityfromDistances(point_distances);
setResult("Excentricity_distances", result_counter, excentricity_distances);
print("Hexagon excentricity (angles): " + excentricity_angles + " Hexagon excentricity (distances): " + excentricity_distances);
irregularity_angles = calculateIrregularity(angles);
setResult("Irregularity_angles", result_counter, irregularity_angles);
irregularity_distances = calculateIrregularityfromDistances(point_distances);
setResult("Irregularity_distances", result_counter, irregularity_distances);
print("Hexagon irregularity (angles): " + irregularity_angles + " Hexagon irregularity (angles): " + irregularity_distances);
Array.getStatistics(angle_values, min_angle);
setResult("First Angle", result_counter, min_angle * 2 * PI);
for (v = 0; v < 6; v++) {
setResult("Corner " + v + " X", result_counter, x_corners[v] * pixel_size);
setResult("Corner " + v + " Y", result_counter, y_corners[v] * pixel_size);
}
print("------------------");
result_counter++;
updateResults();
}
}
/* save results as .csv and the annotated image */
saveAs("Results", image_path + File.separator + image_title + "_Results.csv");
selectImage("LabeledImage");
saveAs("tiff", image_path + File.separator + image_title + "_labeled.tif");
close("Working");
close("Particles");