-
Notifications
You must be signed in to change notification settings - Fork 1
/
chain.c
410 lines (277 loc) · 10.4 KB
/
chain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*! \file
\brief
File with subroutines to calculate an MCMC chain
\author D.Psaltis
\date November 26, 2018
\bugs No known bugs
\warning No known warnings
*/
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned int uint32;
uint32 MTMAX=0xFFFFFFFFU; // max number in the MT random series
#define SEEDNO 4357U // initial seed for random number generator
#define muarcsecToRad 4.8481368110954e-12 //microarcsec to radians
#define ERROR_FILE 9999 // error code for file i/o errors
void seedMT(uint32 seed);
uint32 reloadMT(void);
/*!
\brief
Calculates the model predictions
\details
Given a number of parameters Nparam and their values stored in the
array Aparam[], it returns model prediction at the location with coordinates
(uCo, vCo).
The model used here generates the visibility amplitude of a 2-Gaussian
component model
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from walkers()
@param uCo a double with the u-coordinate for the evaluation of the model
@param vCo a double with the v-coordinate for the evaluation of the model
@param Nparam an int with the number of model parameters
@param Aparam[] an array of doubles with the current values of the model parameters
\return a double with the log prior likelihood
*/
double model(double uCo, double vCo, int Nparam, double Aparam[])
{
double result;
double aux=2.*M_PI*M_PI; // aux quantity used a lot below
double b02=uCo*uCo+vCo*vCo; // baseline length squared
b02*=muarcsecToRad*muarcsecToRad;
// real and imaginary parts of Gaussian 1 (zero centered)
double Vr1=Aparam[0]*exp(-aux*Aparam[1]*Aparam[1]*b02);
double Vi1=0.0;
// amplitude, real and imaginary parts of Gaussian 2
double V2=Aparam[4]*exp(-aux*Aparam[5]*Aparam[5]*b02);
double phase2=-2.*M_PI*(uCo*Aparam[2]+vCo*Aparam[3])*muarcsecToRad;
double Vr2=V2*cos(phase2);
double Vi2=V2*sin(phase2);
// add together real and imaginary parts and take their modulus
result=sqrt((Vr1+Vr2)*(Vr1+Vr2)+Vi2*Vi2);
return result;
}
/*!
\brief
Calculates the priors
\details
Given a number of parameters Nparam and their values stored in the
array Aparam[], it returns the log of the full prior distribution for
the underlying model.
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from walkers()
@param Nparam an int with the number of model parameters
@param Aparam[] an array of doubles with the current values of the model parameters
\return a double with the log prior
*/
double prior(int Nparam, double Aparam[])
{
double result=1.;
// for each gaussian components, the prior is inversely proportional to the
// two scale parameters, normalization and width
// NB: no check for zeros, to increase efficiency
result=-log(Aparam[0]*Aparam[1]*Aparam[4]*Aparam[5]);
return result;
}
/*!
\brief
Calculates the likelihood
\details Given a number of parameters Nparam and their values stored
in the array Aparam[] as well as a number of data points with
coordinates stored in the arrays uCo[] and vCo[], visibility
amplitudes stored in the array Vis[], and errors stored in the arrays
Sigma[], it returns the log of the likelihood for the
underlying model.
In this example the log likelihood is simply the value of -chi2.
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from walkers()
@param Nparam an int with the number of model parameters
@param Aparam[] an array of doubles with the current values of the model parameters
@param Npts an integer with the number of data points
@param uCo[] an array of doubles with the u-coordinates of the data
@param vCo[] an array of doubles with the v-coordinates of the data
@param Vis[] an array of doubles with the visibility amplitudes
@param Sigma[] an array of doubles with the errors
\return a double with the log likelihood
*/
double like(int Nparam, double Aparam[], int Npts, double uCo[], double vCo[], double Vis[], double Sigma[])
{
double result, chi2=0.0;
int index;
// penalize all negative fluxes and sigmas with a very small likelihood
if (Aparam[0]<0 || Aparam[1]<0 || Aparam[4]<0 || Aparam[5]<0)
{
return -1.e34;
}
for (index=1;index<=Npts;index++) // for all data points
{
// calculate the difference between model and data
double variance=Vis[index-1]-model(uCo[index-1],vCo[index-1],Nparam,Aparam);
// add to chi2 value
chi2+=variance*variance/(Sigma[index-1]*Sigma[index-1]);
}
result=-chi2;
/* FOR DEBUG ONLY
for(index=1;index<=Nparam;index++)
printf("%e\t%s",Aparam[index-1],(index==Nparam) ? "\n" : "");
printf("%e\n",result);
*/
return result;
}
/*!
\brief
Calculates the posterior
\details Given a number of parameters Nparam and their values stored
in the array Aparam[] as well as a number of data points with
coordinates stored in the arrays uCo[] and vCo[], visibility
amplitudes stored in the array Vis[], and errors stored in the arrays
Sigma[], it returns the log of the posterior probability for the
underlying model.
In this example the log posterior is equal to the sum of the log prior plus
the log likelihood
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from walkers()
@param Nparam an int with the number of model parameters
@param Aparam[] an array of doubles with the current values of the model parameters
@param Npts an integer with the number of data points
@param uCo[] an array of doubles with the u-coordinates of the data
@param vCo[] an array of doubles with the v-coordinates of the data
@param Vis[] an array of doubles with the visibility amplitudes
@param Sigma[] an array of doubles with the errors
\return a double with the log likelihood
*/
double post(int Nparam, double Aparam[], int Npts, double uCo[], double vCo[], double Vis[], double Sigma[])
{
double result;
result=prior(Nparam,Aparam)+like(Nparam,Aparam,Npts,uCo,vCo,Vis,Sigma);
return result;
}
/*!
\brief
Returns a value drawn from a Gaussian distribution
\details
Returns a value drawn from a zero-centered Gaussian distribution of a
particular standard deviation sigma.
It uses the Box-Muller algorithm and the Mersenne-Twister
random number generator. It presumes that the random number generator
has already been seeded.
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from walkers()
@param sigma a float with the standard deviation of the Gaussian.
\return a double with the value drawn from the distribution
*/
double gauss(double sigma)
{
double y1,y2,result;
// Box-Muller auxiliary variables
y1=randomMT()/(MTMAX*1.0)+0.5; // hack for unsigned ints
y2=randomMT()/(MTMAX*1.0)+0.5;
//y1=rand()/(RAND_MAX+1.0);
//y2=rand()/(RAND_MAX+1.0);
result=sigma*sqrt(-2.0*log(y1))*cos(2.0*M_PI*y2);
return result;
}
/*!
\brief
Runs an MCMC chain
\details
Runs an MCMC chain
\author Dimitrios Psaltis
\version 1.0
\date Nov 26, 2018
\pre It is called from main()
@param fname a string with the filename where to record the chains
@param Nchains an int with the length of the chain to be calculated
@param Nparam an int with the number of model parameters
@param Aparam[] an array of doubles with the initial values of the model parameters
@param dev[] an array of doubles with the standard deviations of Gaussian steps for each model parameter
@param Npts an integer with the number of data points
@param uCo[] an array of doubles with the u-coordinates of the data
@param vCo[] an array of doubles with the v-coordinates of the data
@param Vis[] an array of doubles with the visibility amplitudes
@param Sigma[] an array of doubles with the errors
\return a double with the acceptance ratio for this chain; also on
return, the array Aparam[] will have the model parameters of the most
likely model.
*/
double walkers(char fname[], int Nchain, int Nparam, double Aparam[], double dev[], int Npts, double uCo[], double vCo[], double Vis[], double Sigma[])
{
FILE *chainfile; // file to record MCMC chains
int ichain; // index counting chain links
int iparam; // index counting parameters
int index; // generic index
double AparamPlusOne[Nparam]; // temporary storage of new model parameters
double AparamMax[Nparam]; // parameters of most likely model
double postMax=-1.e34; // maximum posterior
int accept=0; // initialize number of accepted MCMC points
// calculate the posterior for the initial parameters
double probpre=post(Nparam,Aparam,Npts,uCo,vCo,Vis,Sigma);
// open file to output MCMC chain
if ((chainfile=fopen(fname,"w"))==NULL)
{
printf("Error opening file %s for writing\n",fname);
return ERROR_FILE;
}
seedMT(SEEDNO); // start the random number generator
// srand(100);
for (ichain=1;ichain<=Nchain;ichain++)
{
// take a Gaussian step in each parameter
for (iparam=1;iparam<=Nparam;iparam++)
{
AparamPlusOne[iparam-1]=Aparam[iparam-1]+gauss(dev[iparam-1]);
}
// calculate the posterior for the new set of model parameters
double probpost=post(Nparam,AparamPlusOne,Npts,uCo,vCo,Vis,Sigma);
// draw a random number of 0 to 1
double probRandom=randomMT()/(MTMAX*1.0)+0.5; // hack for unsigned ints
// double probRandom=rand()/(RAND_MAX+1.0);
// if the MCMC condition is satisfied
if (probpost>=probpre+log(probRandom))
{
// update the model parameters
for (iparam=1;iparam<=Nparam;iparam++)
{
Aparam[iparam-1]=AparamPlusOne[iparam-1];
}
// and add one to the acceptance counter
accept+=1;
// check if this is the most likely value
if (probpost>postMax)
{
for (iparam=1;iparam<=Nparam;iparam++)
{
AparamMax[iparam-1]=Aparam[iparam-1];
}
postMax=probpost;
}
}
else // otherwise
{
// do nothing
}
// record the chain
for(index=1;index<=Nparam;index++)
fprintf(chainfile,"%e\t%s",Aparam[index-1],(index==Nparam) ? "\n" : "");
}
// close file with chains
fclose(chainfile);
// return the most likely model values
for (iparam=1;iparam<=Nparam;iparam++)
{
Aparam[iparam-1]=AparamMax[iparam-1];
}
// calculate and return the acceptance ratio
double acceptance=accept/(1.0*Nchain);
return acceptance;
}