-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompositeGP.py
233 lines (182 loc) · 8.82 KB
/
CompositeGP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 18 09:59:14 2024
@author: benmu
"""
# %% Imports and setting env
import numpy as np
import matplotlib.pyplot as plt
import torch
import warnings
from BaseGP import BaseGP
from Kernels import CompositeRBFKernel
# %% Gaussian Process
class CompositeGP(BaseGP):
def __init__(self, noise = 1e-4, ynorm = True, optim_itter = 50, lr = 1):
super().__init__(None, None, None, None, noise, ynorm)
self.kernels = None
self.optim_itter = optim_itter
self.lr = lr
# parameters
self.alpha = None
self.kappa = None
self.b = torch.tensor(0.5, requires_grad=True)
self.lamb = torch.tensor(0.5, requires_grad=True)
self.sigma = None
self.sigma12 = None
def fit(self, X, Y):
# Initialising data
self.n_data, self.n_input_params = X.size()
self.n_output_params = Y.size(1)
XS, YS = self.initial_data_scale(X, Y)
# Initial values
self.alpha = self.calc_alpha()
self.kappa = self.alpha.clone().detach().requires_grad_(True)
# Initial sigma is nxn identity matrix
self.sigma = torch.eye(self.n_data)
self.sigma12 = torch.eye(self.n_data)
# Initialising Covariances
kernel_parameters = [5. for _ in range(self.n_input_params)]
self.kernels = [CompositeRBFKernel(kernel_parameters), None]
# Optimise GP
self.optimise()
def predict(self, XX):
# Scale data
XXS = self.standardise_X(XX)
# Useful vector in calculations
ones = torch.ones((self.n_data, 1))
# Calculate kernels
G = self.kernels[0](self.X, self.X)
GX = self.kernels[0](self.X, XXS)
L = self.kernels[1](self.X, self.X)
LX = self.kernels[1](self.X, XXS)
# Calculate q and Q
Q = G + self.lamb * self.sigma12 @ L @ self.sigma12
Qinv = torch.linalg.inv(Q)
gb = self.gb(GX.T, self.b)
v = self.v(gb, self.s2)
q = GX + self.lamb * torch.sqrt(v).T * (self.sigma12 @ LX)
# Calculate Mean
mu = self.mu(G, self.lamb, self.sigma12, L, self.Y)
mean = mu + q.T @ Qinv @ (self.Y - mu)
# calculate Variance
tau2 = self.tau2(G, self.lamb, self.sigma12, L, self.Y)
var = tau2 * (1 + self.lamb * v - q.T @ Qinv @ q + (1 - q.T @ Qinv @ ones) % (1 - q.T @ Qinv @ ones).T / (ones.T @ Qinv @ ones))
# temp
# mean = mu + GX.T @ torch.linalg.inv(G + self.lamb * self.sigma12 @ L @ self.sigma12) @ (self.Y - mu * ones)
# mean += self.lamb * torch.sqrt(v) * (LX.T @ self.sigma12) @ Qinv @ (self.Y - mu)
# Rescale mean and variance
if self.ynorm:
mean = self.denormalise_Y(mean)
var = var * torch.pow(self.Ystd, 2)
return mean, var
def optimise(self):
# Get parameters
parameters = [self.kernels[0].get_loglengthscales(), self.kappa, self.b, self.lamb]
# Initialise optimiser
optimiser = torch.optim.Adam(parameters, lr=self.lr)
# Do training
for i in range(self.optim_itter):
optimiser.zero_grad()
loss = self.negative_log_likelihood()
loss.backward()
# print(i, ":", round(float(loss.detach().numpy()), 4))
optimiser.step()
# Restrict the parameter values
with torch.no_grad():
parameters[0].data = torch.clamp(parameters[0].data, -torch.inf, torch.log(self.alpha))
parameters[1].data = torch.clamp(parameters[1].data, self.alpha, torch.inf)
parameters[2].data = torch.clamp(parameters[2].data, 0, 1)
parameters[3].data = torch.clamp(parameters[3].data, 1e-4, 1)
# Calculate the Kernels to find the sigmas
G = self.kernels[0](self.X, self.X)
L = CompositeRBFKernel(self.kernels[0].get_lengthscales() + self.kappa)(self.X, self.X)
sigma12 = torch.eye(self.n_data)
# Itteratively update the Sigmas
for i in range(4):
s2 = self.calc_s2(self.Y, G, self.lamb, L, sigma12)
sigma = self.calc_sigma(G, self.b, s2)
sigma12 = torch.sqrt(sigma)
# Save sigma and s^2 values
self.s2 = s2
self.sigma = sigma
self.sigma12 = sigma12
# Store second kernel (local kernel)
self.kernels[1] = CompositeRBFKernel(self.kernels[0].get_lengthscales() + self.kappa)
def negative_log_likelihood(self):
# Calculate Kernels
G = self.kernels[0](self.X, self.X)
L = CompositeRBFKernel(self.kernels[0].get_lengthscales() + self.kappa)(self.X, self.X)
# Calcualte sigmas
with torch.no_grad():
sigma12 = torch.eye(self.n_data)
for i in range(4):
s2 = self.calc_s2(self.Y, G, self.lamb, L, sigma12)
sigma = self.calc_sigma(G, self.b, s2)
sigma12 = torch.sqrt(sigma)
s2 = self.calc_s2(self.Y, G, self.lamb, L, sigma12)
sigma = self.calc_sigma(G, self.b, s2)
sigma12 = torch.sqrt(sigma)
# Calculate mu and tau
mu = self.mu(G, self.lamb, sigma12, L, self.Y)
tau2 = self.tau2(G, self.lamb, sigma12, L, self.Y, mu)
# print(tau2, mu, torch.logdet(G + self.lamb * sigma12 @ L @ sigma12))
# return nll
return self.n_data * torch.log(tau2) + torch.logdet(G + self.lamb * sigma12 @ L @ sigma12)
def gb(self, G, b):
# Calculate gb for variance calculations
return G ** b
def v(self, gb, s2):
# calculate variance
vx = (gb @ s2) / (gb @ torch.ones((self.n_data, 1)))
# standardise the variance
return vx / torch.mean(vx)
def calc_sigma(self, G, b, s2):
# calculate standardised sigmas using the standardised variance
gb = self.gb(G, b)
vs = self.v(gb, s2).T[0]
return torch.diag(vs)
def calc_s2(self, Y, G, lamb, L, sigma12):
ones = torch.ones((self.n_data, 1))
mu = self.mu(G, lamb, sigma12, L, Y)
yglobal = mu + G.T @ torch.linalg.inv(G + lamb * sigma12 @ L @ sigma12) @ (Y - mu * ones)
return torch.linalg.inv(sigma12) @ (Y - yglobal) ** 2
def mu(self, G, lamb, sigma12, L, Y, GlambLsiginv=None):
ones = torch.ones((self.n_data, 1))
if GlambLsiginv is None:
GlambLsiginv = torch.linalg.inv(G + lamb * sigma12 @ L @ sigma12)
return torch.linalg.inv(ones.T @ GlambLsiginv @ ones) @ (ones.T @ GlambLsiginv @ Y)
def tau2(self, G, lamb, sigma12, L, Y, mu=None):
ones = torch.ones((self.n_data, 1))
GlambLsiginv = torch.linalg.inv(G + lamb * sigma12 @ L @ sigma12)
if mu is None:
mu = self.mu(G, lamb, sigma12, L, Y, GlambLsiginv)
return (1 / self.n_data) * (Y - mu * ones).T @ GlambLsiginv @ (Y - mu * ones)
def calc_alpha(self):
return torch.log(torch.tensor(100)) / self.davg2()
def davg2(self):
X_norm = torch.sum(self.X * self.X, axis=1).view(-1,1)
distance2 = X_norm.expand(self.n_data, self.n_data) + X_norm.t().expand(self.n_data, self.n_data) - 2.0 * self.X @ self.X.t()
total_distance = 0
for i in range(self.n_data - 1):
for j in range(i + 1, self.n_data):
total_distance += 1 / distance2[i,j]
return (self.n_data * (self.n_data - 1)) / (2 * total_distance)
def plot_1d(self, XX, plot_rows=1, plot_cols=1, plot_index=1):
mean, var = self.predict(XX)
mean = mean.T.detach().numpy()[0]
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
sd = np.sqrt(torch.diagonal(var).detach().numpy())
XX = XX.T.detach().numpy()[0]
X = self.destandardise_X(self.X)
if self.ynorm:
Y = self.denormalise_Y(self.Y)
fig, ax = self.base_plot_1d(XX, mean, sd, X, Y, plot_rows=plot_rows, plot_cols=plot_cols, plot_index=plot_index)
return fig, ax
def plot_2d(self, XX, plot_rows=1, plot_cols=1, plot_index=1):
mean, _ = self.predict(XX)
mean = mean.t().detach().numpy()[0]
x = XX.detach().numpy()
fig, ax = self.base_plot_2d(x, mean, plot_rows=plot_rows, plot_cols=plot_cols, plot_index=plot_index)
return fig, ax