-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathrun_multitask.py
103 lines (80 loc) · 4.3 KB
/
run_multitask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import music21
import torch
from fastai.distributed import *
from fastai.callbacks import SaveModelCallback
try: from apex.optimizers import FusedAdam
except: from torch.optim import Adam as FusedAdam
import numpy as np
import sys
sys.path.insert(0, '..')
from musicautobot.music_transformer import *
from musicautobot.multitask_transformer import *
from musicautobot.utils.stacked_dataloader import StackedDataBunch
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='../data/numpy/')
parser.add_argument('--data_file', type=str, default='musicitem_data_save.pkl')
parser.add_argument('--s2s_data_file', type=str, default='multiitem_data_save.pkl')
parser.add_argument('--save', type=str, default='first_run')
parser.add_argument('--load', type=str, default=None)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--num_workers", type=int, default=12)
parser.add_argument("--bptt", type=int, default=1024)
parser.add_argument('--half', action='store_true', help='Use half precision')
parser.add_argument('--lamb', action='store_true', help='Use lamb optimizer')
parser.add_argument('--wd', type=float, default=1e-3, help='weight decay for adam')
parser.add_argument('--epochs', type=int, default=5, help='num epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--div_factor', type=int, default=10, help='learning rate div factor')
parser.add_argument('--save_every', action='store_true', help='Save every epoch')
parser.add_argument('--config', type=str, default='multitask_config', help='serve.py config name')
parser.add_argument('--no_transpose', action='store_true', help='No transpose data augmentation')
parser.add_argument('--data_parallel', action='store_true', help='DataParallel instead of DDP')
parser.add_argument('--mask_steps', type=int, default=1, help='Attention mask - max number of random steps. Basically teacher forcing')
parser.add_argument('--mask_pitchdur', action='store_true', help='Mask either pitch or duration')
args = parser.parse_args()
args.path = Path(args.path)
if args.local_rank != 0:
f = open('/dev/null', 'w')
sys.stdout = f
# if is_distributed:
# torch.cuda.set_device(args.local_rank)
# torch.distributed.init_process_group(backend='nccl', init_method='env://')
is_distributed = num_distrib() > 0
setup_distrib(args.local_rank)
path = Path(args.path)
from musicautobot import config
config = getattr(config, args.config)()
config['mask_steps'] = args.mask_steps
datasets = []
transpose_range = None if args.no_transpose else (0,12)
mlm_tfm = mask_lm_tfm_pitchdur if args.mask_pitchdur else partial(mask_lm_tfm_default, mask_p=0.4)
data = load_data(args.path, Path('piano_duet')/args.data_file,
bs=args.batch_size, bptt=args.bptt, transpose_range=transpose_range,
dl_tfms=mlm_tfm, num_workers=args.num_workers)
datasets.append(data)
s2s_data = load_data(args.path, Path('s2s_encode')/args.data_file,
bs=args.batch_size//4, bptt=args.bptt, transpose_range=transpose_range,
preloader_cls=S2SPreloader, dl_tfms=melody_chord_tfm, num_workers=args.num_workers)
datasets.append(s2s_data)
combined_data = StackedDataBunch(datasets)
# Load Optimizer
eps = 1e-2 if args.half else 1e-6
opt_func = partial(FusedAdam, betas=(0.9,0.99), eps=eps)
if args.lamb:
from musicautobot.utils.lamb import Lamb
opt_func = partial(Lamb, eps=eps)
# Load Learner
load_path = path/args.load if args.load else None
learn = multitask_model_learner(combined_data, config.copy(), opt_func=opt_func, pretrained_path=load_path)
if not args.half: learn.clip_grad(1.0)
if args.save:
save_path = path/learn.model_dir/args.save
save_path.parent.mkdir(parents=True, exist_ok=True)
if args.half: learn = learn.to_fp16(clip=1.0, dynamic=True, max_scale=2**18)
if is_distributed: learn = learn.to_distributed(args.local_rank, cache_dir=path/'dist_logs')
if args.data_parallel: learn = learn.to_parallel()
if args.local_rank == 0: learn.callbacks.append(SaveModelCallback(learn, name=f'{args.save}_best'))
learn.fit_one_cycle(args.epochs, args.lr, div_factor=args.div_factor, pct_start=.3, final_div=50, wd=args.wd)
if args.local_rank == 0: learn.save(f'{args.save}', config=config)