-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathSampler.py
455 lines (403 loc) · 18.5 KB
/
Sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 2 14:52:48 2013
@author: andy
"""
import numpy as np
import matplotlib.pyplot as plt
class HMC_sampler:
def __init__(self,net,L,eps,scale=False,debug=False,track_vars=list()):
self.L = L
self.eps = eps
self.net = net
self.current_weights = list()
self.current_biases = list()
self.posterior_weights = list()
self.posterior_sd = list()
self.posterior_ARDMean = list()
self.accept = 0.0
self.sim = 0.0
self.log_alpha = 0.0
self.scale = scale
self.track_vars = track_vars
self.track_ranks = list()
self.track_pvals = list()
self.debug = debug
def track(self):
ranks = np.zeros(shape=(len(self.track_vars)))
pvals = np.zeros(shape=(len(self.track_vars)))
for i in range(len(self.track_vars)):
pvals[i] = 1.0-self.testMeanAgainstNull(self.track_vars[i],verbose=False)
ranks[i] = self.getFeatureRankByARDMean(self.track_vars[i])
self.track_ranks.append(ranks)
self.track_pvals.append(pvals)
def plot_debug(self):
for i in range(len(self.track_vars)):
rank = np.zeros(len(self.track_ranks))
for j in range(len(self.track_ranks)):
rank[j] = self.track_ranks[j][i]
pval = np.zeros(len(self.track_pvals))
for j in range(len(self.track_pvals)):
pval[j] = self.track_pvals[j][i]
x = np.linspace(1,len(self.track_ranks),len(self.track_ranks))
plt.subplot(211)
plt.plot(x,rank)
plt.title('Rank for variable ' + str(self.track_vars[i]))
x = np.linspace(1,len(pval),len(pval))
plt.subplot(212)
plt.plot(x,pval)
plt.title('P-value ' + str(self.track_vars[i]))
plt.show()
def simple_annealing_sim(self,n_keep,n_burnin,eta=0.95,T0=100,persist=0.0,var_refresh=1,verbose=False):
n_sim = n_keep + n_burnin
self.sim = 0.0
T = T0
eps = self.eps
while self.sim < n_sim:
self.sim += 1.0
if verbose:
print 'Iteration ' + str(self.sim)
print 'T: ' + str(np.float(T))
print 'eps: ' + str(np.float(eps))
if np.mod(self.sim,var_refresh) == 0:
self.net.updateAllHyperParams()
if verbose:
print 'Updating Hyper Parameters'
self.HMC_sample(self.L,eps,T=T,verbose=verbose,persist=persist)
T = np.max([eta*T,1.0])
if self.sim > n_burnin:
if self.debug and len(self.posterior_ARDMean) > 1:
self.track()
## Get the ARD variance params
self.posterior_sd.append(self.net.layers[0].prior.sW.get())
self.posterior_ARDMean.append(self.net.layers[0].prior.mean.get())
for i in range(0,self.net.num_layers):
self.net.layers[i].addPosteriorWeightSample(self.net.layers[i].weights.get())
self.net.layers[i].addPosteriorBiasSample(self.net.layers[i].biases.get())
def dual_average_sim(self,n_keep,n_burnin,eps0=0.01,delta=0.65,lam=1.0,eps_bar0=1.0,H_bar0=0.0,gamma=0.05,t0=10.0,k=10.0,max_eps=1.0,verbose=False):
#Set up initial values for params
mu = np.log10(10.0*eps0)
H_bar = H_bar0
log_eps_bar_m = np.log(eps_bar0)
n_sim = n_keep + n_burnin
eps = eps0
self.sim = 0.0
while self.sim < n_sim:
self.sim += 1.0
self.net.updateAllHyperParams()
L_m = np.max([1.0,np.round(lam/eps)])
log_eps_m = np.log(eps)
if(verbose):
print 'Iteration ' + str(self.sim)
print 'L_m: ' + str(L_m) + ' eps: ' + str(eps)
self.HMC_sample(np.int(L_m),np.float(eps),verbose=verbose)
if self.sim > n_burnin:
eps = np.exp(log_eps_bar_m)
## Get the ARD variance params
self.posterior_sd.append(self.net.layers[0].prior.sW.get())
for i in range(0,self.net.num_layers):
self.net.layers[i].addPosteriorWeightSample(self.net.layers[i].weights.get())
self.net.layers[i].addPosteriorBiasSample(self.net.layers[i].biases.get())
else:
H_bar = (1 - 1/(self.sim+t0))*H_bar + (1/(self.sim+t0)*(delta-np.exp(self.log_alpha)))
log_eps_m_prev = log_eps_m
log_eps_m = mu - np.sqrt(self.sim)/gamma*H_bar
log_eps_bar_m = self.sim**(-k)*log_eps_m + (1-self.sim**(-k))*log_eps_m_prev
eps = np.min([max_eps,np.exp(log_eps_m)])
def find_starting_eps(self,eps=0.1,verbose=False):
self.net.feed_forward()
prev_kernel_val = self.net.posterior_kernel_val()
print 'Initial kernel val ' + str(prev_kernel_val)
self.HMC_sample(1,eps,always_accept=True)
self.net.feed_forward()
new_kernel_val = self.net.posterior_kernel_val()
ratio = (new_kernel_val/prev_kernel_val)
ratio_ind = 0.0
if ratio > 0.5:
ratio_ind = 1.0
a = 2*ratio_ind - 1
prev_kernel_val = new_kernel_val
if verbose:
print 'Initial Ratio: ' + str(ratio)
print 'New kernel val: ' + str(new_kernel_val)
print 'Initial a: ' + str(a)
i = 0
ratio_test = ratio**(a)
while ratio_test > 2**(-a):
i += 1
eps = 2**(a)*eps
self.HMC_sample(1,eps,always_accept=True)
self.net.feed_forward()
new_kernel_val = self.net.posterior_kernel_val()
ratio = (new_kernel_val/prev_kernel_val)
prev_kernel_val = new_kernel_val
ratio_test = ratio**(a)
if verbose:
print 'Iteration: ' + str(i)
print 'Ratio: ' + str(ratio)
print 'eps: ' + str(eps)
return eps
def copy_params(self):
self.current_weights = list()
self.current_biases = list()
self.current_pW = list()
self.current_pB = list()
for i in range(0,len(self.net.layers)):
self.current_weights.append(self.net.layers[i].weights.copy())
self.current_biases.append(self.net.layers[i].biases.copy())
self.current_pW.append(self.net.layers[i].pW.copy())
self.current_pB.append(self.net.layers[i].pB.copy())
def restore_params(self):
for i in range(0,len(self.net.layers)):
self.net.layers[i].setWeights(self.current_weights[i])
self.net.layers[i].setBiases(self.current_biases[i])
self.net.layers[i].pW = self.current_pW[i]
self.net.layers[i].pB = self.current_pB[i]
def negateMomenta(self):
for i in range(0,len(self.net.layers)):
self.net.layers[i].pW = -1*self.current_pW[i]
self.net.layers[i].pB = -1*self.current_pB[i]
def plotARD(self,featureID,useMedian=False):
P = self.net.layers[0].prior.sW.shape[1]
for i in range(0,P):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,featureID-1]
current_var[j] = sample
plt.subplot(211)
plt.hist(current_var,bins=25,normed=True)
plt.title('Histogram of posterior samples for feature ' + str(featureID+1))
x = np.linspace(1,len(current_var),len(current_var))
plt.subplot(212)
plt.plot(x,current_var)
plt.title('Trace of posterior samples for feature ' + str(featureID+1))
plt.ion()
plt.show()
def getARDSummary(self,plot=0,useMedian=False):
P = self.net.layers[0].prior.sW.shape[1]
summary = np.zeros(P)
stds = np.zeros(P)
for i in range(0,P):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,i]
current_var[j] = sample
if useMedian:
summary[i] = np.median(current_var)
else:
summary[i] = current_var.mean()
stds[i] = current_var.std()
args = summary.argsort()
for i in range(1,len(args)+1):
index = args[-i]
if useMedian:
print 'Median ARD for feature ' + str(index+1) + ' is ' +str(summary[index])
else:
print 'Mean ARD for feature ' + str(index+1) + ' is ' +str(summary[index])
if(plot ==1):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,index]
current_var[j] = sample
plt.subplot(211)
plt.hist(current_var,bins=20,normed=True)
plt.title('Histogram of posterior samples for feature ' + str(index+1))
x = np.linspace(1,len(current_var),len(current_var))
plt.subplot(212)
plt.plot(x,current_var)
plt.title('Trace of posterior samples for feature ' + str(index+1))
plt.ioff()
plt.show()
def getARDPosteriorMeanSummary(self,plot=0,useMedian=False):
P = self.net.layers[0].prior.sW.shape[1]
summary = np.zeros(P)
stds = np.zeros(P)
for i in range(0,P):
current_var = np.zeros(len(self.posterior_ARDMean))
for j in range(0,len(current_var)):
sample = self.posterior_ARDMean[j][0,i]
current_var[j] = sample
if useMedian:
summary[i] = np.median(current_var)
else:
summary[i] = current_var.mean()
stds[i] = current_var.std()
args = summary.argsort()
for i in range(1,len(args)+1):
index = args[-i]
if useMedian:
print 'Median of Posterior ARD Mean samples for feature ' + str(index+1) + ' is ' +str(summary[index])
else:
print 'Average of Posterior ARD Mean samples for feature ' + str(index+1) + ' is ' +str(summary[index])
if(plot ==1):
current_var = np.zeros(len(self.posterior_ARDMean))
for j in range(0,len(current_var)):
sample = self.posterior_ARDMean[j][0,index]
current_var[j] = sample
plt.subplot(211)
plt.hist(current_var,bins=20,normed=True)
plt.title('Histogram of posterior samples for feature ' + str(index+1))
x = np.linspace(1,len(current_var),len(current_var))
plt.subplot(212)
plt.plot(x,current_var)
plt.title('Trace of posterior samples for feature ' + str(index+1))
plt.ioff()
plt.show()
def getFeatureRankByARDMean(self,feature_ID,useMedian=True):
P = self.net.layers[0].prior.sW.shape[1]
summary = np.zeros(P)
stds = np.zeros(P)
for i in range(0,P):
current_var = np.zeros(len(self.posterior_ARDMean))
for j in range(0,len(current_var)):
sample = self.posterior_ARDMean[j][0,i]
current_var[j] = sample
if useMedian:
summary[i] = np.median(current_var)
else:
summary[i] = current_var.mean()
stds[i] = current_var.std()
args = summary.argsort()
rank = 1
for i in range(1,len(args)+1):
index = args[-i]
if index == (feature_ID-1):
return rank
rank = rank + 1
def getFeatureRank(self,feature_ID,useMedian=True):
P = self.net.layers[0].prior.sW.shape[1]
summary = np.zeros(P)
stds = np.zeros(P)
for i in range(0,P):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,i]
current_var[j] = sample
if useMedian:
summary[i] = np.median(current_var)
else:
summary[i] = current_var.mean()
stds[i] = current_var.std()
args = summary.argsort()
rank = 1
for i in range(1,len(args)+1):
index = args[-i]
if index == (feature_ID-1):
return rank
rank = rank + 1
def getCredibleInterval(self,featureID,level=95):
P = self.net.layers[0].prior.sW.shape[1]
for i in range(0,P):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,featureID-1]
current_var[j] = sample
interval = np.array([np.percentile(current_var,q=(100.0-level)/2.0),
np.percentile(current_var,q=100.0-(level/2.0))])
return interval
def testMeanAgainstNull(self,featureID,verbose=True):
num_units = self.net.layers[0].n_units
mean_null = self.net.layers[0].prior.scale/(self.net.layers[0].prior.shape-1)
n_samples = len(self.posterior_ARDMean)
num_hit = 0.0
for i in range(0,n_samples):
sample = self.posterior_ARDMean[i][0,featureID-1]
if( sample > mean_null ):
num_hit += 1.0
p = np.float(num_hit)/np.float(n_samples)
if verbose:
print 'Probability the ARD mean for feature ' + str(featureID) + ' is greater than mean null of '+str(mean_null)+':' + str(p)
return p
def getHit(self,featureID,level=95,verbose=False):
prior = self.net.layers[0].prior
P = prior.sW.shape[1]
for i in range(0,P):
current_var = np.zeros(len(self.posterior_sd))
for j in range(0,len(current_var)):
sample = self.posterior_sd[j][0,featureID-1]
current_var[j] = sample
quantile = (100.0-level)/2.0
interval = np.array([np.percentile(current_var,q=quantile),
np.percentile(current_var,q=(level+quantile))])
num_units = self.net.layers[0].n_units
adjustment = num_units*2.0
shape_null = prior.shape + num_units/2.0
scale_null = prior.scale + adjustment
mean_null = scale_null/(shape_null-1)
hit = False
if interval[0] > mean_null:
hit = True
if verbose:
print 'Feature ' + str(featureID) + ' is a hit? ' + str(hit)
print 'Mean under null: ' + str(mean_null)
print str(level) + '% credible interval: [' + str(interval[0]) + ',' + str(interval[1]) + ']'
return hit
def HMC_sample(self,L,eps,persist=0.0,T=1.0,verbose=False):
self.net.feed_forward()
self.net.update_all_momenta(persist)
if self.scale:
for i in range(0,len(self.net.layers)):
layer = self.net.layers[i]
layer.scaleMomentum()
layer.scaleStepSize()
init_ll = self.net.log_like_val()
current_k = self.net.get_total_k()/2.0
current_u = self.net.posterior_kernel_val()
self.copy_params()
for step in range(0,L):
self.net.updateAllHyperParams()
for i in range(0,len(self.net.layers)):
#Perform 1 leap-frog update
#Update outputs for each layer
self.net.feed_forward()
self.net.updateAllGradients()
#take a half step for momentum
layer = self.net.layers[i]
epsW_component = eps*layer.epsW
epsB_component = eps*layer.epsB
layer.pW = layer.pW + (epsW_component/2.0)*layer.gW
layer.pB = layer.pB + (epsB_component/2.0)*layer.gB
#take a full step for parameters
layer.weights += epsW_component*layer.pW
layer.biases += epsB_component*layer.pB
#Update outputs for each layer
self.net.feed_forward()
self.net.updateAllGradients()
#take a final half step for momentum
layer.pW = layer.pW + (epsW_component/2.0)*layer.gW
layer.pB = layer.pB + (epsB_component/2.0)*layer.gB
self.net.feed_forward()
self.net.updateAllGradients()
##Calculate log_posterior value at current parameter estimates
proposed_u = self.net.posterior_kernel_val()
#Divide by T in the case of SA
proposed_k = self.net.get_total_k()/2.0
diff = (proposed_u - proposed_k - current_u + current_k) /T
alpha = np.min([0,diff])
u = np.log(np.random.random(1)[0])
self.log_alpha = alpha
if u < diff:
msg = 'Accept!'
self.accept += 1.0
else:
msg = 'Reject!'
self.restore_params()
#if persist > 0:
#self.negateMomenta()
if verbose:
metric = 'accuracy'
if self.net.layers[-1].type == 'Gaussian':
metric = 'RMSE'
print '----------------------------'
print 'Current U: ' + str(current_u)
print 'Proposed U: ' + str(proposed_u)
print 'Current K: ' + str(current_k)
print 'Proposed K: ' + str(proposed_k)
print 'Total diff: ' + str(diff)
print 'Current log-like: ' + str(init_ll)
print 'Proposed log-like: ' + str(self.net.log_like_val())
print 'Comparing alpha of: ' + str(alpha) + ' to uniform of: ' + str(u)
print msg
print 'Current '+metric+' on training set: ' + str(self.net.getTrainAccuracy())
print 'Acceptance rate: ' + str(self.accept/np.float(self.sim))
print '----------------------------'