-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvector_nondeterministic_stack.py
286 lines (268 loc) · 10.8 KB
/
vector_nondeterministic_stack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
from torch_semiring_einsum import compile_equation
from lib.pytorch_tools.set_slice import set_slice
from lib.semiring import log
from .common import StackRNNBase
from .nondeterministic_stack import (
NondeterministicStackRNN,
NondeterministicStack,
gamma_i_index,
gamma_j_index,
alpha_j_index
)
from .old_vector_nondeterministic_stack import (
VectorNondeterministicStack as OldVectorNondeterministicStack
)
zeta_i_index = gamma_i_index
zeta_j_index = gamma_j_index
class VectorNondeterministicStackRNN(NondeterministicStackRNN):
def __init__(self, input_size, num_states, stack_alphabet_size,
stack_embedding_size, controller, normalize_operations=False,
include_states_in_reading=True,
original_bottom_symbol_behavior=False,
bottom_vector='learned',
**kwargs):
Q = num_states
S = stack_alphabet_size
m = stack_embedding_size
if not include_states_in_reading:
raise ValueError('include_states_in_reading=False is not supported')
super().__init__(
input_size=input_size,
num_states=num_states,
stack_alphabet_size=stack_alphabet_size,
controller=controller,
normalize_operations=normalize_operations,
original_bottom_symbol_behavior=original_bottom_symbol_behavior,
stack_reading_size=Q * S * m,
include_states_in_reading=include_states_in_reading,
**kwargs
)
self.stack_embedding_size = stack_embedding_size
self.pushed_vector_layer = torch.nn.Sequential(
torch.nn.Linear(
self.controller.output_size(),
stack_embedding_size
),
torch.nn.LogSigmoid()
)
# This parameter is the learned embedding that always sits at the
# bottom of the stack. It is the input to a sigmoid operation, so the
# vector used in the stack will be in (0, 1).
if original_bottom_symbol_behavior:
if bottom_vector is not None:
raise ValueError(
'if original_bottom_symbol_behavior=True, bottom_vector '
'must be None')
else:
self.bottom_vector_type = bottom_vector
if bottom_vector == 'learned':
self.bottom_vector = torch.nn.Parameter(torch.zeros((m,)))
elif bottom_vector in ('one', 'zero'):
pass
else:
raise ValueError(f'unknown bottom vector option: {bottom_vector!r}')
def pushed_vector(self, hidden_state):
return self.pushed_vector_layer(hidden_state)
def get_bottom_vector(self, semiring):
if self.bottom_vector_type == 'learned':
if semiring is not log:
raise NotImplementedError
return torch.nn.functional.logsigmoid(self.bottom_vector)
elif self.bottom_vector_type == 'one':
tensor = next(self.parameters())
return semiring.ones((self.stack_embedding_size,), like=tensor)
elif self.bottom_vector_type == 'zero':
tensor = next(self.parameters())
return semiring.zeros((self.stack_embedding_size,), like=tensor)
else:
raise ValueError
def get_new_stack(self, batch_size, sequence_length, semiring, block_size):
tensor = next(self.parameters())
if not self.original_bottom_symbol_behavior:
return VectorNondeterministicStack(
batch_size=batch_size,
num_states=self.num_states,
stack_alphabet_size=self.stack_alphabet_size,
stack_embedding_size=self.stack_embedding_size,
sequence_length=sequence_length,
bottom_vector=self.get_bottom_vector(semiring),
block_size=block_size,
dtype=tensor.dtype,
device=tensor.device,
semiring=semiring
)
else:
return OldVectorNondeterministicStack(
batch_size=batch_size,
num_states=self.num_states,
stack_alphabet_size=self.stack_alphabet_size,
stack_embedding_size=self.stack_embedding_size,
sequence_length=sequence_length,
block_size=block_size,
dtype=tensor.dtype,
device=tensor.device,
semiring=semiring
)
class State(StackRNNBase.State):
def compute_stack(self, hidden_state, stack):
push, repl, pop = self.rnn.operation_log_scores(hidden_state)
pushed_vector = self.rnn.pushed_vector(hidden_state)
actions = (push, repl, pop, pushed_vector)
stack.update(push, repl, pop, pushed_vector)
return stack, actions
class VectorNondeterministicStack(NondeterministicStack):
def __init__(self, batch_size, num_states, stack_alphabet_size,
stack_embedding_size, sequence_length, bottom_vector, block_size,
dtype, device, semiring):
super().__init__(
batch_size=batch_size,
num_states=num_states,
stack_alphabet_size=stack_alphabet_size,
sequence_length=sequence_length,
include_states_in_reading=True,
block_size=block_size,
dtype=dtype,
device=device,
semiring=semiring
)
B = self.batch_size
Q = self.num_states
S = self.stack_alphabet_size
m = self.stack_embedding_size = stack_embedding_size
n = self.sequence_length
# self.zeta[:, i+1, j, q, x, r, y] contains the value of
# $\zeta[i \rightarrow j][q, x \rightarrow r, y]$ for 0 <= j <= n-1
# and -1 <= i <= t-1. The value of zeta for j = n is not needed.
# So, the size of self.zeta is n x n.
self.zeta = semiring.zeros((B, n, n, Q, S, Q, S, m), dtype=dtype, device=device)
# Initialize $\zeta[-1 \rightaarrow 0]$ to the (possibly learned)
# bottom vector.
self.zeta = semiring.combine(
[self.zeta, bottom_vector],
lambda args: set_slice(
args[0],
(slice(None), zeta_i_index(-1), zeta_j_index(0)),
args[1]))
self.zeta_j = semiring.on_tensor(
self.zeta,
lambda x: x[:, :zeta_i_index(self.j), zeta_j_index(self.j)])
def update(self, push, repl, pop, pushed_vector):
# push : B x Q x S x Q x S
# repl : B x Q x S x Q x S
# pop : B x Q x S x Q
# pushed_vector : B x m
# Update the self.gamma and self.alpha tables.
result = super().update(push, repl, pop, return_gamma_prime=True)
semiring = self.semiring
block_size = self.block_size
j = self.j
# self.zeta_j : B x j+1 x Q x S x Q x S x m
self.zeta_j = next_zeta_column(
# B x j x j x Q x S x Q x S x m
semiring.on_tensor(self.zeta, lambda x: x[:, :zeta_i_index(j-1), :zeta_j_index(j)]),
# B x j-1 x Q x S x Q
result.gamma_prime_j,
push,
repl,
pushed_vector,
semiring,
block_size
)
result.gamma_prime_j = None
self.zeta = semiring.combine(
[self.zeta, self.zeta_j],
lambda args: set_slice(
args[0],
(slice(None), slice(None, zeta_i_index(j)), zeta_j_index(j)),
args[1]))
return result
def reading(self):
semiring = self.semiring
# eta_j : B x Q x S x m
eta_j = next_eta_column(
semiring.on_tensor(self.alpha, lambda x: x[:, :alpha_j_index(self.j)]),
self.zeta_j,
semiring,
self.block_size
)
return eta_to_reading(self.alpha_j, eta_j, semiring)
ZETA_REPL_EQUATION = compile_equation('biqxszm,bszry->biqxrym')
ZETA_POP_EQUATION = compile_equation('bikqxtym,bktyr->biqxrym')
def next_zeta_column(zeta, gamma_prime_j, push, repl, pushed_vector, semiring,
block_size):
# zeta : B x T-1 x T-1 x Q x S x Q x S x m
# gamma_prime_j : B x T-2 x Q x S x Q
# return : B x T x Q x S x Q x S x m
T = semiring.get_tensor(zeta).size(1) + 1
B, _, _, Q, S, _, _, m = semiring.get_tensor(zeta).size()
# push : B x Q x S x Q x S
# pushed_vector : B x m
# push_term : B x 1 x Q x S x Q x S x m
push_term = semiring.on_tensor(
# B x Q x S x Q x S x m
semiring.multiply(
# B x Q x S x Q x S x 1
semiring.on_tensor(push, lambda x: x[:, :, :, :, :, None]),
# B x 1 x 1 x 1 x 1 x m
semiring.on_tensor(pushed_vector, lambda x: x[:, None, None, None, None, :])
),
lambda x: x[:, None]
)
# repl_term : B x T-1 x Q x S x Q x S x m
if T == 1:
repl_term = semiring.primitive(
semiring.get_tensor(zeta).new_empty(B, 0, Q, S, Q, S, m))
else:
repl_term = semiring.einsum(
ZETA_REPL_EQUATION,
# B x T-1 x Q x S x Q x S x m
semiring.on_tensor(zeta, lambda x: x[:, :, -1]),
# B x Q x S x Q x S
repl,
block_size=block_size,
**(dict(grad_of_neg_inf=0.0) if semiring is log else {})
)
# pop_term : B x T-2 x Q x S x Q x S x m
if T <= 2:
pop_term = semiring.primitive(
semiring.get_tensor(zeta).new_empty(B, 0, Q, S, Q, S, m))
else:
pop_term = semiring.einsum(
ZETA_POP_EQUATION,
# B x T-2 x T-2 x Q x S x Q x S x m
semiring.on_tensor(zeta, lambda x: x[:, :-1, :-1]),
# B x T-2 x Q x S x Q
gamma_prime_j,
block_size=block_size,
**(dict(grad_of_neg_inf=0.0) if semiring is log else {})
)
return semiring.combine([
semiring.add(
semiring.on_tensor(repl_term, lambda x: x[:, :-1]),
pop_term
),
semiring.on_tensor(repl_term, lambda x: x[:, -1:]),
push_term
], lambda args: torch.cat(args, dim=1))
ETA_EQUATION = compile_equation('biqx,biqxrym->brym')
def next_eta_column(alpha, zeta_j, semiring, block_size):
# alpha : B x T x Q x S
# zeta_j : B x T x Q x S x Q x S x m
# return : B x Q x S x m
return semiring.einsum(
ETA_EQUATION,
alpha,
zeta_j,
block_size=block_size
)
def eta_to_reading(alpha_j, eta_j, semiring):
assert semiring is log
# alpha_j : B x Q x S
# eta_j : B x Q x S x m
# denom : B
denom = semiring.sum(alpha_j, dim=(1, 2))
# Divide (in log space) eta by the sum over alpha, then take the exp
# to get back to real space. Finally, flatten the dimensions.
B = eta_j.size(0)
return torch.exp(eta_j - denom[:, None, None, None]).view(B, -1)