-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimize_spinemet.py
86 lines (75 loc) · 3.67 KB
/
optimize_spinemet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import pandas as pd
import numpy as np
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
tf.compat.v1.random.set_random_seed(42)
from tensorflow_probability import distributions as tfd
from tensorflow.keras.layers import Input, Dense, Activation, Concatenate, BatchNormalization, Dropout
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from sksurv.metrics import concordance_index_ipcw, integrated_brier_score, cumulative_dynamic_auc
from sksurv.util import Surv
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from model import MDN
from utils import NLLLoss,CensoredNLLLoss,AlternativeNLLLoss
from utils import concordance_index_ipcw_scorer,integrated_brier_scorer,cumulative_dynamic_auc_scorer,root_mean_squared_error_scorer
import optuna
from optimizer import Optimizer
from sklearn.preprocessing import MinMaxScaler
import json
from sksurv.datasets import load_veterans_lung_cancer
from sksurv.column import encode_categorical
name = "MDN_spinemet_data"
# Load and Preprocess
df = pd.read_csv("Data/spinemet.tsv", sep = "\t")
drop_list = ["patient_id"] # These are predictions...
df = df.drop(drop_list,axis=1)
time_scaler = MinMaxScaler()
df["survival_in_days"]= time_scaler.fit_transform(df["survival_in_days"].to_numpy().reshape(-1, 1))
t = np.float32(df["survival_in_days"].to_numpy())
delta = df["censored"].to_numpy().astype(np.float32)
# fix normal values, whenever available:
normal_values = {"na":np.mean([136,145]),
"k":np.mean([3.5,5.1]),
"vvt":np.mean([3.8,5.8]),
"hg":np.mean([120,170]),
"htk":np.mean([35,50]),
"fvs":np.mean([4,10]),
"thr":np.mean([150,350]),
"creat":np.mean([53,88]),
"alp":150,
"ldh":160,
"albumin":np.mean([34,50]),
"serum_protein":np.mean([64,82])}
df = df.fillna(normal_values)
from preprocessing import Preprocessor
cat_feats = ["sex","primer_tumor","histological_classification","surgery_season","invasiveness"]
num_feats = ["age","paresis_scale","frankel_grade","preop_karnofsky","ecog",
"num_of_interspinal_metastases","num_of_operated_segments",
"avg_len_of_operated_segments","num_of_surgeries",
"num_of_extraspinal_bonemetastases","removability","hospital_days",
"asa","charlson_comorbidity_index","na","k","vvt","hg","htk",
"fvs","thr","creat","alp","ldh","albumin","serum_protein"]
pp = Preprocessor(cat_feat_strat="mode",num_feat_strat="knn",scaling_strategy="minmax",remaining="ignore")
df = pp.fit_transform(df, cat_feats=cat_feats, num_feats=num_feats)
X = df.drop(["survival_in_days","censored"],axis = 1).copy()
x_size = len(X.columns)
X = np.float32(X.to_numpy())
y = np.stack([t,delta],axis = 1)
# Run Optimizer
print("Running Optimizer with LogRank binary scoring")
opt = Optimizer(X,y,name,num_epochs=200,batch_size=128,use_kfold=True,use_logrank=True,
kernel_list = ["Exponential","Gumbel","Normal","Logistic","LogLogistic"])
best_val,best_params = opt(1000)
best_params['UnoC_LR']=best_val
print(best_params)
with open(f"Logs/{name}.json", "w") as write_file:
json.dump(best_params, write_file)
print("Running Optimizer normaly")
opt = Optimizer(X,y,name,num_epochs=200,batch_size=128,use_kfold=True,use_logrank=False,
kernel_list = ["Exponential","Gumbel","Normal","Logistic","LogLogistic"])
best_val,best_params = opt(1000)
best_params['UnoC']=best_val
print(best_params)
with open(f"Logs/{name}_no_logrank.json", "w") as write_file:
json.dump(best_params, write_file)