Skip to content

Commit 5faa0fe

Browse files
committed
update lecture notes
1 parent 4bd9953 commit 5faa0fe

20 files changed

+169
-4
lines changed

Lecture-notes/DGL_Lecture_1/README.md

+8
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
### DGL Lecture 1
2+
***
3+
4+
* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types
5+
6+
* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix
7+
8+
* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks
Binary file not shown.

Lecture-notes/DGL_Lecture_2/README.md

+11
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
### DGL Lecture 2
2+
***
3+
* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning
4+
5+
* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding
6+
7+
* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding
8+
9+
* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer
10+
11+
* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates
Binary file not shown.
Binary file not shown.

Lecture-notes/DGL_Lecture_3/README.md

+13
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
### DGL Lecture 3
2+
***
3+
4+
5+
* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization
6+
7+
* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning
8+
9+
* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating
10+
11+
* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations
12+
13+
* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods
Binary file not shown.
Binary file not shown.

Lecture-notes/DGL_Lecture_4/README.md

+15
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
### DGL Lecture 4
2+
***
3+
4+
5+
* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent
6+
7+
* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods
8+
9+
* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods
10+
11+
* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer
12+
13+
* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout
14+
15+
* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning
Binary file not shown.
Binary file not shown.

Lecture-notes/DGL_Lecture_5/README.md

+11
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
### DGL Lecture 5
2+
***
3+
4+
5+
* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs
6+
7+
* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs
8+
9+
* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness
10+
11+
* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets
Binary file not shown.
Binary file not shown.

Lecture-notes/DGL_Lecture_6/README.md

+18
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
### DGL Lecture 6
2+
***
3+
4+
5+
* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs
6+
7+
* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs
8+
9+
* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation
10+
11+
* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation
12+
13+
* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs
14+
15+
* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net
16+
17+
* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs
18+
Binary file not shown.

README.md

+93-4
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,94 @@
1-
# DGL 2024 (ICL, Computing)
2-
Deep Graph-Based Learning Course.
1+
# Deep Graph Learning (DGL, 2024)
32

4-
# Lecture videos and notes
5-
Follow us at https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&ab_channel=BASIRALab
3+
Taught by Prof. [Islem Rekik](https://basira-lab.com/) at Imperial College London
4+
***
5+
6+
### Introduction
7+
This repo contains all the lecture notes for this DGL course. All relevant records for this course can be accessed at [BASIRA Lab](https://www.youtube.com/playlist?list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T).
8+
9+
***
10+
### Course Lectures
11+
* [Lecture 1](./Lecture-notes/DGL_Lecture_1/):
12+
13+
* [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types
14+
15+
* [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix
16+
17+
* [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks
18+
19+
* [Lecture 2](./Lecture-notes/DGL_Lecture_2/):
20+
21+
* [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning
22+
23+
* [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding
24+
25+
* [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding
26+
27+
* [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer
28+
29+
* [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates
30+
31+
* [Lecture 3](./Lecture-notes/DGL_Lecture_3/):
32+
33+
* [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization
34+
35+
* [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning
36+
37+
* [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating
38+
39+
* [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations
40+
41+
* [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods
42+
43+
* [Lecture 4](./Lecture-notes/DGL_Lecture_4/):
44+
45+
* [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent
46+
47+
* [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods
48+
49+
* [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods
50+
51+
* [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer
52+
53+
* [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout
54+
55+
* [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning
56+
57+
* [Lecture 5](./Lecture-notes/DGL_Lecture_5/):
58+
59+
* [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs
60+
61+
* [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs
62+
63+
* [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness
64+
65+
* [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets
66+
67+
* [Lecture 6](./Lecture-notes/DGL_Lecture_6/):
68+
69+
* [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs
70+
71+
* [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs
72+
73+
* [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation
74+
75+
* [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation
76+
77+
* [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs
78+
79+
* [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net
80+
81+
* [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs
82+
83+
***
84+
### Homeworks
85+
86+
***
87+
### Paper analysis worksheets
88+
89+
***
90+
### Project
91+
92+
***
93+
### Tutorials
94+
***

0 commit comments

Comments
 (0)