|
1 |
| -# DGL 2024 (ICL, Computing) |
2 |
| -Deep Graph-Based Learning Course. |
| 1 | +# Deep Graph Learning (DGL, 2024) |
3 | 2 |
|
4 |
| -# Lecture videos and notes |
5 |
| -Follow us at https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&ab_channel=BASIRALab |
| 3 | +Taught by Prof. [Islem Rekik](https://basira-lab.com/) at Imperial College London |
| 4 | +*** |
| 5 | + |
| 6 | +### Introduction |
| 7 | +This repo contains all the lecture notes for this DGL course. All relevant records for this course can be accessed at [BASIRA Lab](https://www.youtube.com/playlist?list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T). |
| 8 | + |
| 9 | +*** |
| 10 | +### Course Lectures |
| 11 | +* [Lecture 1](./Lecture-notes/DGL_Lecture_1/): |
| 12 | + |
| 13 | + * [Lecture 1.1](https://www.youtube.com/watch?v=gQRV_jUyaDw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=1): Graph types |
| 14 | + |
| 15 | + * [Lecture 1.2](https://www.youtube.com/watch?v=WnQZILX6aC0&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=2): The Graph matrix |
| 16 | + |
| 17 | + * [Lecture 1.3](https://www.youtube.com/watch?v=u4bkPFTsvxY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=3): Graph learning tasks |
| 18 | + |
| 19 | +* [Lecture 2](./Lecture-notes/DGL_Lecture_2/): |
| 20 | + |
| 21 | + * [Lecture 2.1](https://www.youtube.com/watch?v=gS1MnemlmFQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=4): The logic behind graph-based learning |
| 22 | + |
| 23 | + * [Lecture 2.2](https://www.youtube.com/watch?v=UdCx7mFGYaY&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=5): The evolving landscope of feature embedding |
| 24 | + |
| 25 | + * [Lecture 2.3](https://www.youtube.com/watch?v=feMNrzUUIFc&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=6): Shallow graph node embedding |
| 26 | + |
| 27 | + * [Lecture 2.4](https://www.youtube.com/watch?v=XZtd_4aEFJM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=7): Analyzing a single GCN layer |
| 28 | + |
| 29 | + * [Lecture 2.5](https://www.youtube.com/watch?v=xiiGb4Y5OPo&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=8): Generalized GCN node and layer updates |
| 30 | + |
| 31 | +* [Lecture 3](./Lecture-notes/DGL_Lecture_3/): |
| 32 | + |
| 33 | + * [Lecture 3.1](https://www.youtube.com/watch?v=SxEgHgguqkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=9): GCN training and loss optimization |
| 34 | + |
| 35 | + * [Lecture 3.2](https://www.youtube.com/watch?v=b8GWuCyEt3Q&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=10): GNN inductive capability & graph-based learning |
| 36 | + |
| 37 | + * [Lecture 3.3](https://www.youtube.com/watch?v=BYC_i-V7Fx8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=11): Graph pooling & embedding aggregating |
| 38 | + |
| 39 | + * [Lecture 3.4](https://www.youtube.com/watch?v=Kg3P4EaWMBk&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=12): GCN layer operations |
| 40 | + |
| 41 | + * [Lecture 3.5](https://www.youtube.com/watch?v=zRmzVkidkqA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=13): Global and local aggregation methods |
| 42 | + |
| 43 | +* [Lecture 4](./Lecture-notes/DGL_Lecture_4/): |
| 44 | + |
| 45 | + * [Lecture 4.1](https://www.youtube.com/watch?v=H8RsdeAiOBg&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=14): Point, batch and mini-batch gradient descent |
| 46 | + |
| 47 | + * [Lecture 4.2](https://www.youtube.com/watch?v=704WpxpDaig&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=15): Batching and GNN sampling methods |
| 48 | + |
| 49 | + * [Lecture 4.3](https://www.youtube.com/watch?v=fyBxrWgb44U&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=16): Recap on GNN sampling methods |
| 50 | + |
| 51 | + * [Lecture 4.4](https://www.youtube.com/watch?v=hdMlYbqyzJQ&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=17): GNN batch normalization layer |
| 52 | + |
| 53 | + * [Lecture 4.5](https://www.youtube.com/watch?v=3e5zjVKsbsw&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=18): Generalized GNN layer and Dropout |
| 54 | + |
| 55 | + * [Lecture 4.6](https://www.youtube.com/watch?v=Lrr25EzAgkI&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=19): GNN inductive vs transductive learning |
| 56 | + |
| 57 | +* [Lecture 5](./Lecture-notes/DGL_Lecture_5/): |
| 58 | + |
| 59 | + * [Lecture 5.1](https://www.youtube.com/watch?v=Ac8h2rvhieU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=20): Node permutation invariance in GNNs |
| 60 | + |
| 61 | + * [Lecture 5.2](https://www.youtube.com/watch?v=9Ko8EN7zVLM&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=21): Node permutation equivariance in GNNs |
| 62 | + |
| 63 | + * [Lecture 5.3](https://www.youtube.com/watch?v=vZ06k7kiUMU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=22): GNN expressiveness |
| 64 | + |
| 65 | + * [Lecture 5.4](https://www.youtube.com/watch?v=trJwayzmEoU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=23): Graph Isomorphism Network Expressive Nets |
| 66 | + |
| 67 | +* [Lecture 6](./Lecture-notes/DGL_Lecture_6/): |
| 68 | + |
| 69 | + * [Lecture 6.1](https://www.youtube.com/watch?v=TLiHaXinKlA&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=24): Overview of supervised generative GNNs |
| 70 | + |
| 71 | + * [Lecture 6.2](https://www.youtube.com/watch?v=JV-zvTBa9e4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=25): Self-supervised/unsupervised generative GNNs |
| 72 | + |
| 73 | + * [Lecture 6.3](https://www.youtube.com/watch?v=IQ3SJsJwajU&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=26): Unconditional sequential graph generation |
| 74 | + |
| 75 | + * [Lecture 6.4](https://www.youtube.com/watch?v=3YosTx06Nl4&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=27): Unconditional one-shot graph generation |
| 76 | + |
| 77 | + * [Lecture 6.5](https://www.youtube.com/watch?v=I4uquGfm-N8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=28): Supervised conditional generation on graphs |
| 78 | + |
| 79 | + * [Lecture 6.6](https://www.youtube.com/watch?v=Sp3L1wP1urs&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=29): Generative Graph U-Net |
| 80 | + |
| 81 | + * [Lecture 6.7](https://www.youtube.com/watch?v=7S1Ut6Kx6i8&list=PLug43ldmRSo14Y_vt7S6vanPGh-JpHR7T&index=30): Evaluation measures for generative GNNs |
| 82 | + |
| 83 | +*** |
| 84 | +### Homeworks |
| 85 | + |
| 86 | +*** |
| 87 | +### Paper analysis worksheets |
| 88 | + |
| 89 | +*** |
| 90 | +### Project |
| 91 | + |
| 92 | +*** |
| 93 | +### Tutorials |
| 94 | +*** |
0 commit comments