|
4 | 4 |
|
5 | 5 | A utility that can use 18 kinds of curve algorithm.
|
6 | 6 |
|
7 |
| -# Version |
| 7 | +## Version |
8 | 8 |
|
9 |
| -- Unity 2017.3.0f3 |
| 9 | +- Unity 2018.3.0f2 |
10 | 10 |
|
11 |
| -# Install |
12 |
| - |
13 |
| -1. Go to the following page and download "UnityCurveUtils.unitypackage". |
14 |
| -https://github.com/baba-s/unity-curve-utils/blob/master/UnityCurveUtils.unitypackage?raw=true |
15 |
| -2. Import the downloaded "UnityCurveUtils.unitypackage" into the Unity project. |
16 |
| - |
17 |
| -# Example |
| 11 | +## Example |
18 | 12 |
|
19 | 13 | 
|
20 | 14 |
|
21 | 15 | An example of use of each curve algorithm is stored in "Example" folder.
|
22 | 16 |
|
23 |
| -# Algorithm list |
| 17 | +## Algorithm list |
24 | 18 |
|
25 |
| -## B-Spline curve |
| 19 | +### B-Spline curve |
26 | 20 |
|
27 | 21 | 
|
28 | 22 |
|
29 | 23 | ```cs
|
30 | 24 | var point = UnityCurveUtils.B_SplineCurve( x1, y1, x2, y2, x3, y3, t );
|
31 | 25 | ```
|
32 | 26 |
|
33 |
| -## Bezier curve |
| 27 | +### Bezier curve |
34 | 28 |
|
35 | 29 | 
|
36 | 30 |
|
37 | 31 | ```cs
|
38 | 32 | var point = UnityCurveUtils.BezierCurve( x1, y1, x2, y2, x3, y3, x4, y4, t );
|
39 | 33 | ```
|
40 | 34 |
|
41 |
| -## Hyperbolic spiral |
| 35 | +### Hyperbolic spiral |
42 | 36 |
|
43 | 37 | 
|
44 | 38 |
|
45 | 39 | ```cs
|
46 | 40 | var point = UnityCurveUtils.HyperbolicSpiral( a, c theta );
|
47 | 41 | ```
|
48 | 42 |
|
49 |
| -## Witch of agnesi |
| 43 | +### Witch of agnesi |
50 | 44 |
|
51 | 45 | 
|
52 | 46 |
|
53 | 47 | ```cs
|
54 | 48 | var point = UnityCurveUtils.WitchOfAgnesi( a, theta );
|
55 | 49 | ```
|
56 | 50 |
|
57 |
| -## Folium of descartes |
| 51 | +### Folium of descartes |
58 | 52 |
|
59 | 53 | 
|
60 | 54 |
|
61 | 55 | ```cs
|
62 | 56 | var point = UnityCurveUtils.FoliumOfDescartes( a, theta );
|
63 | 57 | ```
|
64 | 58 |
|
65 |
| -## Ellipse |
| 59 | +### Ellipse |
66 | 60 |
|
67 | 61 | 
|
68 | 62 |
|
69 | 63 | ```cs
|
70 | 64 | var point = UnityCurveUtils.Ellipse( a, b, theta );
|
71 | 65 | ```
|
72 | 66 |
|
73 |
| -## Hyperbola |
| 67 | +### Hyperbola |
74 | 68 |
|
75 | 69 | 
|
76 | 70 |
|
77 | 71 | ```cs
|
78 | 72 | var point = UnityCurveUtils.Hyperbola( a, b, theta );
|
79 | 73 | ```
|
80 | 74 |
|
81 |
| -## Involute of circle |
| 75 | +### Involute of circle |
82 | 76 |
|
83 | 77 | 
|
84 | 78 |
|
85 | 79 | ```cs
|
86 | 80 | var point = UnityCurveUtils.InvoluteOfCircle( a, theta );
|
87 | 81 | ```
|
88 | 82 |
|
89 |
| -## Strophoid |
| 83 | +### Strophoid |
90 | 84 |
|
91 | 85 | 
|
92 | 86 |
|
93 | 87 | ```cs
|
94 | 88 | var point = UnityCurveUtils.Strophoid( a, theta );
|
95 | 89 | ```
|
96 | 90 |
|
97 |
| -## Conchoid |
| 91 | +### Conchoid |
98 | 92 |
|
99 | 93 | 
|
100 | 94 |
|
101 | 95 | ```cs
|
102 | 96 | var point = UnityCurveUtils.Conchoid( a, l, theta );
|
103 | 97 | ```
|
104 | 98 |
|
105 |
| -## Cissoid |
| 99 | +### Cissoid |
106 | 100 |
|
107 | 101 | 
|
108 | 102 |
|
109 | 103 | ```cs
|
110 | 104 | var point = UnityCurveUtils.Cissoid( a, theta );
|
111 | 105 | ```
|
112 | 106 |
|
113 |
| -## Lissajous curve |
| 107 | +### Lissajous curve |
114 | 108 |
|
115 | 109 | 
|
116 | 110 |
|
117 | 111 | ```cs
|
118 | 112 | var point = UnityCurveUtils.LissajousCurve( A, B, a, b, delta, theta );
|
119 | 113 | ```
|
120 | 114 |
|
121 |
| -## Trochoid |
| 115 | +### Trochoid |
122 | 116 |
|
123 | 117 | 
|
124 | 118 |
|
125 | 119 | ```cs
|
126 | 120 | var point = UnityCurveUtils.Trochoid( rm, theta, rd );
|
127 | 121 | ```
|
128 | 122 |
|
129 |
| -## Epitrocoid |
| 123 | +### Epitrocoid |
130 | 124 |
|
131 | 125 | 
|
132 | 126 |
|
133 | 127 | ```cs
|
134 | 128 | var point = UnityCurveUtils.Epitrocoid( rc, rm, theta, rd );
|
135 | 129 | ```
|
136 | 130 |
|
137 |
| -## Hypetrocoid |
| 131 | +### Hypetrocoid |
138 | 132 |
|
139 | 133 | 
|
140 | 134 |
|
141 | 135 | ```cs
|
142 | 136 | var point = UnityCurveUtils.Hypetrocoid( rc, rm, theta, rd );
|
143 | 137 | ```
|
144 | 138 |
|
145 |
| -## Cycloid |
| 139 | +### Cycloid |
146 | 140 |
|
147 | 141 | 
|
148 | 142 |
|
149 | 143 | ```cs
|
150 | 144 | var point = UnityCurveUtils.Cycloid( rm, theta );
|
151 | 145 | ```
|
152 | 146 |
|
153 |
| -## Epicycloid |
| 147 | +### Epicycloid |
154 | 148 |
|
155 | 149 | 
|
156 | 150 |
|
157 | 151 | ```cs
|
158 | 152 | var point = UnityCurveUtils.Epicycloid( rm, rd, theta );
|
159 | 153 | ```
|
160 | 154 |
|
161 |
| -## Hypocycloid |
| 155 | +### Hypocycloid |
162 | 156 |
|
163 | 157 | 
|
164 | 158 |
|
|
0 commit comments