forked from futscdav/Chunkmogrify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask_refinement.py
77 lines (58 loc) · 2.42 KB
/
mask_refinement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#
# Author: David Futschik
# Provided as part of the Chunkmogrify project, 2021.
#
import math
import torch
import numpy as np
from torch.nn import functional as F
def torch_grad(x):
a = torch.tensor([[-1, 0, 1]], dtype=torch.float32, device=x.device, requires_grad=False).view((1, 1, 1, 3))
b = torch.tensor([[-1, 0, 1]], dtype=torch.float32, device=x.device, requires_grad=False).view((1, 1, 3, 1))
G_x = F.conv2d(x, a) / 2
G_y = F.conv2d(x, b) / 2
G_x = F.pad(G_x, (1, 1, 0, 0), 'constant', 0.)
G_y = F.pad(G_y, (0, 0, 1, 1), 'constant', 0.)
return [G_x, G_y]
def torch_normgrad_curv(x):
G_x, G_y = torch_grad(x)
G = torch.sqrt(torch.pow(G_x,2) + torch.pow(G_y,2))
# div
div = torch_grad(G_x / (G + 1e-8) )[0] + torch_grad(G_y / (G + 1e-8))[1]
return G, div
def contrast_magnify(x, min=0, max=64, fromval=0., toval=255.):
mul_by = (toval - min) / max
x = ((x - min) * mul_by).clip(fromval, toval)
return x
def mask_refine(mask, image1, image2, dt_A=0.001, dt_B=0.1, iters=300):
S = (mask - 0.5)
P = S[:, 0:1, :, :]
Pg = torch_normgrad_curv(P)[0]
I_1_mean = ((Pg * image1)).sum(dim=(2,3)) / Pg.sum()
I_2_mean = ((Pg * image2)).sum(dim=(2,3)) / Pg.sum()
assert I_1_mean.shape == (1, 3), "Mean wrong shape"
I_1 = image1 - I_1_mean[:, :, None, None]
I_2 = image2 - I_2_mean[:, :, None, None]
Fn = I_1 - I_2
Fn = Fn.norm(dim=1) / math.sqrt(12)
P = P * 255
Fn = Fn * 255
Fn = contrast_magnify(Fn)
with torch.no_grad():
for _ in range(iters):
ng, div = torch_normgrad_curv(P)
P -= dt_A * Fn * ng - dt_B * ng * div
P = torch.where(P < 0, 0., 1.)
new_mask = P
return new_mask
if __name__ == "__main__":
import PIL.Image
i1 = PIL.Image.open("_I1_.png")
i2 = PIL.Image.open("_I2_.png")
s = PIL.Image.open("_P_.png")
i1 = (torch.tensor( np.array(i1).astype(np.float), dtype=torch.float32, device='cuda:0' ) / 127.5).permute((2,0,1)).unsqueeze(0)
i2 = (torch.tensor( np.array(i2).astype(np.float), dtype=torch.float32, device='cuda:0' ) / 127.5).permute((2,0,1)).unsqueeze(0)
s = (torch.tensor( np.array(s).astype(np.float), dtype=torch.float32, device='cuda:0' ) / 255.).unsqueeze(0).unsqueeze(0)
m = mask_refine(s, i1 - 1, i2 - 1)
d = m.cpu().numpy()[0].transpose((1,2,0)).__mul__(255.).astype(np.uint8)
PIL.Image.fromarray(d[:, :, 0]).save("maskrefine.png")