forked from futscdav/Chunkmogrify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
align.py
427 lines (359 loc) · 17.1 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from
https://github.com/NVlabs/ffhq-dataset
http://dlib.net/face_landmark_detection.py.html
requirements:
apt install cmake
conda install Pillow numpy scipy
pip install dlib
# download face landmark model from:
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
import PIL
import PIL.Image
import os
import scipy
import scipy.ndimage
import dlib
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms.functional as fn
from argparse import ArgumentParser
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
predictor = dlib.shape_predictor('./resources/shape_predictor_68_face_landmarks.dat')
def get_landmark(filepath):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
img = dlib.load_rgb_image(filepath)
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
k, d.left(), d.top(), d.right(), d.bottom()))
# Get the landmarks/parts for the face in box d.
shape = predictor(img, d)
print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
# lm is a shape=(68,2) np.array
return lm
def align_face(filepath):
"""
:param filepath: str
:return: PIL Image
"""
lm = get_landmark(filepath)
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# read image
img = PIL.Image.open(filepath)
output_size=1024
transform_size=4096
enable_padding=True
# Shrink.
shrink = int(np.floor(qsize / 1024 * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
return img
def get_landmark_npy(img):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
dets = detector(img, 1)
if len(dets) == 0:
raise RuntimeError("No faces found")
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
k, d.left(), d.top(), d.right(), d.bottom()))
# Get the landmarks/parts for the face in box d.
shape = predictor(img, d)
print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
# lm is a shape=(68,2) np.array
return lm
def align_face_npy(img, output_size=1024):
lm = get_landmark_npy(img)
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
img = Image.fromarray(img)
transform_size=4096
enable_padding=True
# Shrink.
shrink = int(np.floor(qsize / 1024 * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
return np.array(img)
def align_face_npy_with_params(img, output_size=1204):
lm = get_landmark_npy(img)
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
img = Image.fromarray(img)
transform_size=4096
enable_padding=True
# Shrink.
shrink = int(np.floor(qsize / 1024 * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
shrunk_image = img
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
actual_crop = (0, 0, 0, 0)
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
actual_crop = crop
img = img.crop(crop)
quad -= crop[0:2]
# # Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
actual_padding = (0, 0, 0, 0)
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
actual_padding = pad
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
padded_img = img
# # Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
return np.array(img), [shrink, actual_crop, actual_padding, quad, padded_img, shrunk_image]
def unalign_face_npy(aligned_image, alignment_params):
# Shrinking of the original image means that the face was too large to be represented
# in the output size anyway, so it doesn't make sense to reverse it.
shrink, crop, padding, quad, padded_img, shrunk_image = alignment_params
def build_perspective(srcpts, dstpts):
srcpts = np.array(srcpts)
dstpts = np.array(dstpts)
A = \
[
# x1
[srcpts[0, 0], srcpts[0, 1], 1, 0, 0, 0, -srcpts[0, 0] * dstpts[0, 0], -srcpts[0, 1] * dstpts[0, 0]],
[0, 0, 0, srcpts[0, 0], srcpts[0, 1], 1, -srcpts[0, 0] * dstpts[0, 1], -srcpts[0, 1] * dstpts[0, 1]],
# x2
[srcpts[1, 0], srcpts[1, 1], 1, 0, 0, 0, -srcpts[1, 0] * dstpts[1, 0], -srcpts[1, 1] * dstpts[1, 0]],
[0, 0, 0, srcpts[1, 0], srcpts[1, 1], 1, -srcpts[1, 0] * dstpts[1, 1], -srcpts[1, 1] * dstpts[1, 1]],
# x3
[srcpts[2, 0], srcpts[2, 1], 1, 0, 0, 0, -srcpts[2, 0] * dstpts[2, 0], -srcpts[2, 1] * dstpts[2, 0]],
[0, 0, 0, srcpts[2, 0], srcpts[2, 1], 1, -srcpts[2, 0] * dstpts[2, 1], -srcpts[2, 1] * dstpts[2, 1]],
# x4
[srcpts[3, 0], srcpts[3, 1], 1, 0, 0, 0, -srcpts[3, 0] * dstpts[3, 0], -srcpts[3, 1] * dstpts[3, 0]],
[0, 0, 0, srcpts[3, 0], srcpts[3, 1], 1, -srcpts[3, 0] * dstpts[3, 1], -srcpts[3, 1] * dstpts[3, 1]],
]
b = [dstpts[0, 0], dstpts[0, 1], dstpts[1, 0], dstpts[1, 1], dstpts[2, 0], dstpts[2, 1], dstpts[3, 0], dstpts[3, 1]]
coeffs = np.linalg.solve(np.array(A), np.array(b))
xform = \
[
[coeffs[0], coeffs[1], coeffs[2]],
[coeffs[3], coeffs[4], coeffs[5]],
[coeffs[6], coeffs[7], 1]
]
return np.array(xform)
# Transform back to the unaligned quad.
c = build_perspective(
[[0, 0], [0, 1024], [1024, 1024], [1024, 0]],
quad + 0.5,
)
c = np.linalg.inv(c)
# Upperscale with pytorch
aligned_pil = PIL.Image.fromarray(aligned_image)
aligned_pil = fn.resize(aligned_pil, size=[1024])
fill_mask = PIL.Image.fromarray(np.ones_like(aligned_pil, dtype=np.uint8) * 255)
# Inverse to `unaligned = aligned_pil.transform((1024, 1024), PIL.Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC)``
unaligned = aligned_pil.transform(
(padded_img.width, padded_img.height),
Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC
)
unaligned_mask = fill_mask.transform(
(padded_img.width, padded_img.height),
Image.PERSPECTIVE, c.reshape(9)[0:8], Image.BICUBIC
)
# "Unpad"
unaligned = np.array(unaligned)[padding[1]:unaligned.height-padding[3], padding[0]:unaligned.width-padding[2], :]
unaligned_mask = np.array(unaligned_mask)[padding[1]:unaligned_mask.height-padding[3], padding[0]:unaligned_mask.width-padding[2], :]
# Ideally get rid of the blur added with padding, but that's not as trivial..
# Uncrop.
canvas = np.empty((shrunk_image.height, shrunk_image.width, unaligned.shape[2]), dtype=unaligned.dtype)
mask = np.zeros((shrunk_image.height, shrunk_image.width, unaligned_mask.shape[2]), dtype=unaligned_mask.dtype)
if crop[0] == 0 and crop[1] == 0 and crop[2] == 0 and crop[3] == 0:
# no crop, TODO: split x and y
canvas = unaligned
mask = unaligned_mask
else:
canvas[crop[1]:crop[3], crop[0]:crop[2], :] = unaligned
mask[crop[1]:crop[3], crop[0]:crop[2], :] = unaligned_mask
mask = mask[:, :, 0:1]
x, y, w, h = cv2.boundingRect(mask)
unaligned = cv2.seamlessClone(canvas, np.array(shrunk_image), mask, (int(x + w / 2), int(y + h /2)), 1)
# esta es la imagen original - aca
# tengo que quitarle la mascar y unirla con la imagen original
aligned = np.array(unaligned)
return aligned
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("input", type=str)
parser.add_argument("--output", type=str, default=None)
args = parser.parse_args()
if os.path.exists(args.input):
if args.output is None:
d, b = os.path.split(args.input)
args.output = os.path.join(d, os.path.splitext(b)[0] + '_aligned' + os.path.splitext(b)[1])
aligned = align_face(args.input)
aligned.save(args.output)