-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathnumpy_min_max.py
74 lines (52 loc) · 1.76 KB
/
numpy_min_max.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Problem Statement
min
The tool min returns the minimum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.min(my_array, axis = 0) #Output : [1 0]
print numpy.min(my_array, axis = 1) #Output : [2 3 1 0]
print numpy.min(my_array, axis = None) #Output : 0
print numpy.min(my_array) #Output : 0
By default, the axis value is None. Therefore, it finds the minimum over all the dimensions of the input array.
max
The tool max returns the maximum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.max(my_array, axis = 0) #Output : [4 7]
print numpy.max(my_array, axis = 1) #Output : [5 7 3 4]
print numpy.max(my_array, axis = None) #Output : 7
print numpy.max(my_array) #Output : 7
By default, the axis value is None. Therefore, it finds the maximum over all the dimensions of the input array.
Task
You are given a 2-D array with dimensions NXM.
Your task is to perform the min function over axis 1 and then find the max of that.
Input Format
The first line of input contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format
Compute the min along axis 1 and then print the max of that result.
Sample Input
4 2
2 5
3 7
1 3
4 0
Sample Output
3
Explanation
The min along axis 1 = [2,3,1,0]
The max of [2,3,1,0] = 3
"""
import numpy
k = map(int,raw_input().split())
y = [ map(int,raw_input().split()) for _ in xrange(k[0])]
a= numpy.array(y)
mini = numpy.min(a,axis=1)
print numpy.max(mini)