-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathnumpy_concatenate.py
69 lines (49 loc) · 1.5 KB
/
numpy_concatenate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Concatenate
Two or more arrays can be concatenated together using the concatenate function with a tuple of the arrays to be joined:
import numpy
array_1 = numpy.array([1,2,3])
array_2 = numpy.array([4,5,6])
array_3 = numpy.array([7,8,9])
print numpy.concatenate((array_1, array_2, array_3))
#Output
[1 2 3 4 5 6 7 8 9]
If an array has more than one dimension, it is possible to specify the axis along which multiple arrays are concatenated. By default, it is along the first dimension.
import numpy
array_1 = numpy.array([[1,2,3],[0,0,0]])
array_2 = numpy.array([[0,0,0],[7,8,9]])
print numpy.concatenate((array_1, array_2), axis = 1)
#Output
[[1 2 3 0 0 0]
[0 0 0 7 8 9]]
Task
You are given two integer arrays of size NXP and MXP (N & M are rows, and P is the column). Your task is to concatenate the arrays along axis 0.
Input Format
The first line contains space separated integers N, M and P.
The next N lines contains the space separated elements of the P columns.
After that, the next M lines contains the space separated elements of the P columns.
Output Format
Print the concatenated array of size (N+M)XP.
Sample Input
4 3 2
1 2
1 2
1 2
1 2
3 4
3 4
3 4
Sample Output
[[1 2]
[1 2]
[1 2]
[1 2]
[3 4]
[3 4]
[3 4]]
"""
import numpy
k = map(int,raw_input().split())
l,m = [ map(int,raw_input().split()) for _ in xrange(k[0]) ],[ map(int,raw_input().split()) for _ in xrange(k[1]) ]
array_1,array_2 = numpy.array(l),numpy.array(m)
print numpy.concatenate((array_1, array_2), axis = 0)