-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtesting_CUBS.py
129 lines (100 loc) · 5.32 KB
/
testing_CUBS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
from os import listdir
from os.path import isfile, join
import skipthoughts
import os.path
import pickle
import tensorflow as tf
import numpy as np
from os import listdir
from os.path import isfile, join
import pickle
import random
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
model = skipthoughts.load_model()
beta=0.3 #Leak Factor
keep_prob=0.7 #Dropout layer parameter
noise_length=100 #Noise vector length
batch_size=1 # Batch Size for training
lam=2.0 #divergence loss lagrange multiplier
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess=tf.Session(config=config)
def encoding(input):
encoded_vector_dir = './encoded_vector'
try:
caption_vectors = skipthoughts.encode(model, input)
print("Sentence encoding sucessful")
except:
print("Failed sentence encoding")
files_ = 'test_vector.pkl'
with open(join(encoded_vector_dir,files_), mode='wb') as myfile:
pickle.dump(caption_vectors, myfile)
def Generator(batch_size,z_len,encoded_sentences_tensor,reuse_flag,training_flag):
with tf.variable_scope(tf.get_variable_scope(),reuse=reuse_flag):
g_mu_w_0=tf.get_variable('g_mu_w_0',shape=[4800,128],initializer=tf.contrib.layers.xavier_initializer())
g_mu_b_0=tf.get_variable('g_mu_b_0',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_mu_a_0=tf.matmul(encoded_sentences_tensor,g_mu_w_0)+g_mu_b_0
g_mu_a_0=tf.maximum(g_mu_a_0,beta*g_mu_a_0)
g_sd_w_0=tf.get_variable('g_sd_w_0',shape=[4800,128],initializer=tf.contrib.layers.xavier_initializer())
g_sd_b_0=tf.get_variable('g_sd_b_0',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_sd_a_0=tf.matmul(encoded_sentences_tensor,g_sd_w_0)+g_sd_b_0
g_sd_a_0=tf.maximum(g_sd_a_0,beta*g_sd_a_0)
epsilon=tf.random_normal([batch_size,128],mean=0,stddev=1)
g_cond=g_mu_a_0+tf.multiply(g_sd_a_0,epsilon)
z=tf.random_normal([batch_size,z_len],mean=0,stddev=1)
ip=tf.concat([z,g_cond],1)
g_w1=tf.get_variable('g_w1',shape=[z_len+128,4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_b1=tf.get_variable('g_b1',shape=[4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_a1=tf.matmul(ip,g_w1)+g_b1
g_a1=tf.reshape(g_a1,[-1,4,4,1024])
g_a1=tf.layers.batch_normalization(g_a1,training=training_flag,reuse=reuse_flag)
g_a1=tf.maximum(g_a1,beta*g_a1)
g_w2=tf.get_variable('g_w2',shape=[3,3,512,1024],initializer=tf.contrib.layers.xavier_initializer())
g_b2=tf.get_variable('g_b2',shape=[512],initializer=tf.contrib.layers.xavier_initializer())
g_a2=tf.nn.conv2d_transpose(g_a1,g_w2,output_shape=[batch_size,8,8,512],strides=[1,2,2,1],padding='SAME')+g_b2
g_a2=tf.layers.batch_normalization(g_a2,training=training_flag,scale=True,reuse=reuse_flag)
g_a2=tf.maximum(g_a2,beta*g_a2)
g_w3=tf.get_variable('g_w3',shape=[3,3,256,512],initializer=tf.contrib.layers.xavier_initializer())
g_b3=tf.get_variable('g_b3',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
g_a3=tf.nn.conv2d_transpose(g_a2,g_w3,output_shape=[batch_size,16,16,256],strides=[1,2,2,1],padding='SAME')+g_b3
g_a3=tf.layers.batch_normalization(g_a3,training=training_flag,scale=True,reuse=reuse_flag)
g_a3=tf.maximum(g_a3,beta*g_a3)
g_w4=tf.get_variable('g_w4',shape=[3,3,128,256],initializer=tf.contrib.layers.xavier_initializer())
g_b4=tf.get_variable('g_b4',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_a4=tf.nn.conv2d_transpose(g_a3,g_w4,output_shape=[batch_size,32,32,128],strides=[1,2,2,1],padding='SAME')+g_b4
g_a4=tf.layers.batch_normalization(g_a4,training=training_flag,scale=True,reuse=reuse_flag)
g_a4=tf.maximum(g_a4,beta*g_a4)
g_w5=tf.get_variable('g_w5',shape=[3,3,3,128],initializer=tf.contrib.layers.xavier_initializer())
g_b5=tf.get_variable('g_b5',shape=[3],initializer=tf.contrib.layers.xavier_initializer())
g_a5=tf.nn.conv2d_transpose(g_a4,g_w5,output_shape=[batch_size,64,64,3],strides=[1,2,2,1],padding='SAME')+g_b5
return tf.nn.sigmoid(g_a5),g_mu_a_0,g_sd_a_0
def show_image():
encoded_sentences=pickle.load(open('./encoded_vector/test_vector.pkl','rb'))
print(np.shape(encoded_sentences))
gen_images=sess.run(generated_images_tensor,feed_dict={encoded_sentences_tensor:encoded_sentences[-1].reshape(1,4800),training_flag:False})
print(np.shape(gen_images))
return gen_images[0]
if __name__ == "__main__":
_captions = []
encoded_sentences_tensor=tf.placeholder(tf.float32,shape=[batch_size,4800])
training_flag = tf.placeholder(tf.bool)
generated_images_tensor,_,_=Generator(batch_size,noise_length,encoded_sentences_tensor,False,training_flag)
sess.run(tf.global_variables_initializer())
saver=tf.train.Saver()
saver.restore(sess,'./saved_models/c2i-255000')
print("Model restored.")
while True:
a = input("Text: ")
_captions.append(a)
encoding(_captions)
gen_images = []
fig=plt.figure(figsize=(8, 8))
columns = 2
rows = 3
for i in range(1,columns*rows +1):
img = show_image()
fig.add_subplot(rows, columns, i)
plt.imshow(img)
plt.show()