-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
145 lines (111 loc) · 6.43 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#! /usr/bin/env python
# coding=utf-8
import cv2
import os
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from core.config import cfg
from core.yolov3 import YOLOV3
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
class YoloTest(object):
def __init__(self):
self.input_size = cfg.TEST.INPUT_SIZE
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS))
self.weight_file = cfg.TEST.WEIGHT_FILE
self.score_threshold = cfg.TEST.SCORE_THRESHOLD
self.iou_threshold = cfg.TEST.IOU_THRESHOLD
self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY
self.annotation_path = cfg.TEST.ANNOT_PATH
self.ground_truth_path = cfg.TEST.GROUND_TRUTH_PATH
if os.path.exists(self.ground_truth_path):
shutil.rmtree(self.ground_truth_path)
os.makedirs(self.ground_truth_path)
self.predicted_path = cfg.TEST.PREDICTED_PATH
if os.path.exists(self.predicted_path):
shutil.rmtree(self.predicted_path)
os.makedirs(self.predicted_path)
self.write_image = cfg.TEST.WRITE_IMAGE
self.write_image_path = cfg.TEST.WRITE_IMAGE_PATH
if os.path.exists(self.write_image_path):
shutil.rmtree(self.write_image_path)
os.makedirs(self.write_image_path)
self.show_label = cfg.TEST.SHOW_LABEL
with tf.name_scope('input'):
self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')
self.lwir_input_data = tf.placeholder(dtype=tf.float32, name='lwir_input_data')
self.trainable = tf.placeholder(dtype=tf.bool, name='trainable')
model = YOLOV3(self.input_data, self.lwir_input_data, self.trainable)
self.pred_sbbox, self.pred_mbbox, self.pred_lbbox = model.pred_sbbox, model.pred_mbbox, model.pred_lbbox
with tf.name_scope('ema'):
ema_obj = tf.train.ExponentialMovingAverage(self.moving_ave_decay)
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
self.saver = tf.train.Saver(ema_obj.variables_to_restore())
self.saver.restore(self.sess, self.weight_file)
def predict(self, image, lwir_image):
org_image = np.copy(image)
org_h, org_w, _ = org_image.shape
image_data = utils.image_preporcess(image, [self.input_size, self.input_size])
image_data = image_data[np.newaxis, ...]
lwir_image_data = utils.image_preporcess(lwir_image, [self.input_size, self.input_size])
lwir_image_data = lwir_image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = self.sess.run([self.pred_sbbox, self.pred_mbbox, self.pred_lbbox],
feed_dict={self.input_data: image_data, self.lwir_input_data: lwir_image_data, self.trainable: False})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + self.num_classes)),
np.reshape(pred_mbbox, (-1, 5 + self.num_classes)),
np.reshape(pred_lbbox, (-1, 5 + self.num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, (org_h, org_w), self.input_size, self.score_threshold)
bboxes = utils.nms(bboxes, self.iou_threshold)
return bboxes
def evaluate(self):
with open(self.annotation_path, 'r') as annotation_file:
for num, line in enumerate(annotation_file):
annotation = line.strip().split()
image_file = annotation[0]
image_name = image_file.split('/')[-1]
image = cv2.imread(image_file)
lwir_image_file = annotation[1]
lwir_image = cv2.imread(lwir_image_file)
bbox_data_gt = np.array([list(map(int, box.split(','))) for box in annotation[2:]])
if len(bbox_data_gt) == 0:
bboxes_gt = []
classes_gt = []
else:
bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
ground_truth_file = os.path.join(self.ground_truth_path, image_name.replace('.jpg', '.txt'))
num_bbox_gt = len(bboxes_gt)
print('=> ground truth of %s' % image_name, 'ground_truth_file %s' % ground_truth_file,
'bbox_gt.len %d' % num_bbox_gt)
with open(ground_truth_file, 'w') as f:
for i in range(num_bbox_gt):
class_name = self.classes[classes_gt[i]]
xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())
predict_result_file = os.path.join(self.predicted_path, image_name.replace('.jpg', '.txt'))
bboxes_pr = self.predict(image)
print('=> predict result of %s:' % image_name, 'predict_result_file %s' % predict_result_file,
'bboxes_pr.len %d' % len(bboxes_pr))
if self.write_image:
image = utils.draw_bbox(image, bboxes_pr, show_label=self.show_label)
cv2.imwrite(os.path.join(self.write_image_path, image_name), image)
lwir_image = utils.draw_bbox(lwir_image, bboxes_pr, show_label=self.show_label)
cv2.imwrite(os.path.join(self.write_image_path, image_name.replace('.jpg', '_lwir.jpg')), lwir_image)
with open(predict_result_file, 'w') as f:
for bbox in bboxes_pr:
coor = np.array(bbox[:4], dtype=np.int32)
score = bbox[4]
class_ind = int(bbox[5])
class_name = self.classes[class_ind]
score = '%.4f' % score
xmin, ymin, xmax, ymax = list(map(str, coor))
bbox_mess = ' '.join([class_name, score, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())
if __name__ == '__main__':
YoloTest().evaluate()