Skip to content

Commit eb36251

Browse files
committed
1 parent f23cf26 commit eb36251

File tree

5 files changed

+25
-13
lines changed

5 files changed

+25
-13
lines changed

diagrams/monge.ggb

247 Bytes
Binary file not shown.

diagrams/monge.png

19.2 KB
Loading

feuerbach.md

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -51,14 +51,16 @@ Other proofs can be found [here](https://imomath.com/index.php?options=323) (Pro
5151

5252
**Theorem 1** The circle through the [feet of the internal bisectors](https://mathworld.wolfram.com/IncentralTriangle.html) *I*<sub>A</sub>*I*<sub>B</sub>*I*<sub>C</sub> of a triangle *ABC* passes through the Feuerbach point.
5353

54-
[Here](pythagoras/feuerbach-1.py) is a computational proof *starting from incircle*.
54+
[Here](pythagoras/feuerbach-1.py) is the computational proof *starting from incircle*.
5555

5656
**Theorem 2** The Feuerbach point of a triangle *ABC* is the [anti-Steiner point](https://artofproblemsolving.com/community/c1646h1025320s3_antisteiner_point) of the Euler line of the [intouch triangle](https://mathworld.wolfram.com/ContactTriangle.html) *C*<sub>A</sub>*C*<sub>B</sub>*C*<sub>C</sub> with respect to the same intouch triangle *C*<sub>A</sub>*C*<sub>B</sub>*C*<sub>C</sub>.
5757

58-
[Here](pythagoras/feuerbach-2.py) is a computational proof *starting from incircle*.
58+
[Here](pythagoras/feuerbach-2.py) is the computational proof *starting from incircle*.
5959

6060
Other proofs of the two theorems can be found [here](http://blancosilva.github.io/post/2013/07/15/some-results-related-to-the-feuerbach-point.html) (computational) and [here](https://forumgeom.fau.edu/FG2012volume12/FG201205.pdf) (synthetic).
6161

6262
**Theorem 3** Let *F*<sub>A</sub>, *F*<sub>B</sub>, *F*<sub>C</sub> be the touch points of the nine-point circle with the *A*-, *B*-, *C*- excircles, respectively. The lines *AF*<sub>A</sub>, *BF*<sub>B</sub>, *CF*<sub>C</sub> meet at *X*(12), the harmonic conjugate of the Feuerbach point *F*<sub>I</sub> with respect to the incenter *I* and the nine-point center *N*. <sup>[1](https://www.cut-the-knot.org/Curriculum/Geometry/FeuerbachIncidence.shtml)</sup>
6363

64-
[Here](pythagoras/feuerbach-3.py) is a computational proof *starting from incircle*.
64+
[Here](pythagoras/feuerbach-3.py) is the computational proof *starting from incircle*.
65+
66+
This theorem can also be proved by [Monge's theorem](monge.md#monges-theorem) (Theorem 2).

monge.md

Lines changed: 19 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -93,31 +93,41 @@ which is between *a* and *b*. So it should be the internal intersection. Denote
9393

9494
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{H'A}}{\overrightarrow{BH'}}=\frac{a-h'}{h'-b}=\frac{R}r\quad\text{(Eq.\,2)}">
9595

96+
The external and internal intersections, are the external and internal **[homothetic centers](https://en.wikipedia.org/wiki/Homothetic_center#Circles)** of two circles, and they are harmonic conjugate with respect to the two circle centers:
97+
98+
<img src="https://latex.codecogs.com/gif.latex?(A,B;H,H')=-1">
99+
96100
For example, one circle is inside the other:
97101

98102
<img src="https://latex.codecogs.com/gif.latex?\begin{cases}x^2+y^2=9\\x^2+(y+1)^2=1\end{cases}">
99103

100-
The two external tangent lines are <img src="https://latex.codecogs.com/gif.latex?y=\pm\sqrt{3}ix/2-3/2"> (tangent points are <img src="https://latex.codecogs.com/gif.latex?(\pm{3}\sqrt{3}i,-6)"> and <img src="https://latex.codecogs.com/gif.latex?(\pm\sqrt{3}i,-3)">), and their intersection is <img src="https://latex.codecogs.com/gif.latex?(0,-3/2)">.
104+
The two external tangent lines are <img src="https://latex.codecogs.com/gif.latex?y=\pm\sqrt{3}ix/2-3/2"> (tangent points are <img src="https://latex.codecogs.com/gif.latex?(\pm{3}\sqrt{3}i,-6)"> and <img src="https://latex.codecogs.com/gif.latex?(\pm\sqrt{3}i,-3)">), and their intersection (internal homothetic center) is <img src="https://latex.codecogs.com/gif.latex?(0,-3/2)">.
101105

102-
The two internal tangent lines are <img src="https://latex.codecogs.com/gif.latex?y=\pm\sqrt{15}ix/4-3/4"> (tangent points are <img src="https://latex.codecogs.com/gif.latex?(\pm{3}\sqrt{15}i,-12)"> and <img src="https://latex.codecogs.com/gif.latex?(\pm\sqrt{15}i,3)">), and their intersection is <img src="https://latex.codecogs.com/gif.latex?(0,-3/4)">.
106+
The two internal tangent lines are <img src="https://latex.codecogs.com/gif.latex?y=\pm\sqrt{15}ix/4-3/4"> (tangent points are <img src="https://latex.codecogs.com/gif.latex?(\pm{3}\sqrt{15}i,-12)"> and <img src="https://latex.codecogs.com/gif.latex?(\pm\sqrt{15}i,3)">), and their intersection (external homothetic center) is <img src="https://latex.codecogs.com/gif.latex?(0,-3/4)">.
103107

104108
### Monge's theorem
105109

106110
<img src="diagrams/monge.png">
107111

108-
**Monge's theorem** states that for any three circles in a plane, the intersection points of each of the three pairs of external tangent lines are collinear. This still holds even if one circle is completely inside the other.
112+
**Theorem 1** For any three circles in a plane, the intersection points of each of the three pairs of external tangent lines (i.e. three external homothetic centers) are collinear. This still holds even if one circle is completely inside the other.
113+
114+
This can be proved by applying Eq. 1 onto *D*, *E* and *F* and Menelaus's theorem:
115+
116+
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{DB}}{\overrightarrow{DC}}\cdot\frac{\overrightarrow{EC}}{\overrightarrow{EA}}\cdot\frac{\overrightarrow{FA}}{\overrightarrow{FB}}=\frac{r_B}{r_C}\cdot\frac{r_C}{r_A}\cdot\frac{r_A}{r_B}=1">
117+
118+
**Theorem 2** For three circles (*A*), (*B*) and (*C*) in a plane, the external homothetic center *D* of (*B*) and (*C*), the internal homothetic center *E'* of (*C*) and (*A*), and the internal homothetic center *F'* of (*A*) and (*B*), are collinear.
109119

110-
Let's apply Eq. 1 onto three external intersections *D*, *E* and *F*:
120+
This can be proved by applying Eq. 1 onto *D*, Eq. 2 onto *E'* and *F'* and Menelaus's theorem:
111121

112-
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{DA}}{\overrightarrow{DB}}\cdot\frac{\overrightarrow{EC}}{\overrightarrow{EA}}\cdot\frac{\overrightarrow{FB}}{\overrightarrow{FC}}=\frac{r_A}{r_B}\cdot\frac{r_C}{r_A}\cdot\frac{r_B}{r_C}=1">
122+
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{DB}}{\overrightarrow{DC}}\cdot\frac{\overrightarrow{CE'}}{\overrightarrow{E'A}}\cdot\frac{\overrightarrow{AF'}}{\overrightarrow{F'B}}=\frac{r_B}{r_C}\cdot\frac{r_C}{r_A}\cdot\frac{r_A}{r_B}=1">
113123

114-
According to Menelaus's theorem, *D*, *E* and *F* are collinear.
124+
A famous triangle center *X*(12) mentioned [here](feuerbach.md#theorems-related-to-the-feuerbach-point) (Theorem 3) can be proved by this theorem.
115125

116-
The three internal intersections *D'*, *E'* and *F'* have a similar property. Let's apply Eq. 2 onto them:
126+
**Theorem 3** For three circles (*A*), (*B*) and (*C*) in a plane, let *D'*, *E'* and *F'* be the internal homothetic centers of (*B*)(*C*), (*C*)(*A*) and (*A*)(*B*), respectively, then *AD'*, *BE'* and *CF'* are concurrent.
117127

118-
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{D'A}}{\overrightarrow{BD'}}\cdot\frac{\overrightarrow{E'C}}{\overrightarrow{AE'}}\cdot\frac{\overrightarrow{F'B}}{\overrightarrow{CF'}}=\frac{r_A}{r_B}\cdot\frac{r_C}{r_A}\cdot\frac{r_B}{r_C}=1">
128+
This can be proved by applying Eq. 2 onto *D'*, *E'* and *F'* and Ceva's theorem:
119129

120-
According to Ceva's theorem, *CD'*, *BE'* and *AF'* are concurrent.
130+
<img src="https://latex.codecogs.com/gif.latex?\frac{\overrightarrow{BD'}}{\overrightarrow{D'C}}\cdot\frac{\overrightarrow{CE'}}{\overrightarrow{E'A}}\cdot\frac{\overrightarrow{AF'}}{\overrightarrow{F'B}}=\frac{r_B}{r_C}\cdot\frac{r_C}{r_A}\cdot\frac{r_A}{r_B}=1">
121131

122132
### Note
123133

sphere.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ Then it's easy to calculate the intersection *O* of the three tangent planes, an
3030

3131
### Eight vertices of a hexahedron lie on a sphere
3232

33-
> If seven vertices of a (quadrilaterally-faced) hexahedron lie on a sphere, then so does the eighth vertex. <sup>[2](https://imomath.com/index.php?options=323) (Problem 11)</sup>
33+
> If seven vertices of a (quadrilaterally-faced) hexahedron lie on a sphere, then so does the eighth vertex. <sup>[1](https://imomath.com/index.php?options=323) (Problem 11)</sup>
3434
3535
Just like the previous problem, we define arbitrary points *O*(0,0,0), *A*(*a*,0,0), *B*(*b*,*c*,0) and *C*(*d*,*e*,*f*), then calculate the sphere passing through these four points:
3636

0 commit comments

Comments
 (0)