This is the official code-release for the paper Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation, published at ICLR 2024.
Clone the repository:
git clone [email protected]:atomicarchitects/symphony.git
cd symphony
git checkout iclr_2024_final
Since this repository is actively being developed, we recommend using the iclr_2024_final
branch for the most stable version of the code.
Create and activate a virtual environment:
python -m venv .venv && source .venv/bin/activate
Install pip dependencies with:
pip install --upgrade pip && pip install -r requirements.txt
For GPU support, install JAX with CUDA support afterwards:
pip install --upgrade "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
Some of the analysis scripts require openbabel==3.1.1
.
This can be installed through conda.
Check that installation suceeded by running a short test:
python -m tests.train_test
Start training with a configuration defined
under configs/
:
python -m symphony \
--config configs/qm9/e3schnet_and_nequip.py \
--workdir ./workdirs
The --workdir
flag specifies the directory where the
model checkpoints, logs, and other artifacts will be saved.
Since the configuration is defined using config_flags, you can override hyperparameters. For example, to change the number of training steps, and the batch size:
python -m symphony --config configs/qm9/e3schnet_and_nequip.py \
--workdir ./workdirs \
--config.num_train_steps=10 --config.max_n_graphs=16
For more extensive changes, directly edit the configuration files, or add your own.
Please cite our paper if you use this code!
@inproceedings{
daigavane2024symphony,
title={Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation},
author={Ameya Daigavane and Song Eun Kim and Mario Geiger and Tess Smidt},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=MIEnYtlGyv}
}