-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathoptim_factory.py
executable file
·175 lines (158 loc) · 6.67 KB
/
optim_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
'''
Optimizer Factory w/ Custom Weight Decay
Modified from timm
Use parameter name to remove weight decay since
tensor product weight is always one-dimensional.
'''
from typing import Optional
import torch
import torch.nn as nn
import torch.optim as optim
from timm.optim.adafactor import Adafactor
from timm.optim.adahessian import Adahessian
from timm.optim.adamp import AdamP
from timm.optim.lookahead import Lookahead
from timm.optim.nadam import Nadam
from timm.optim.novograd import NovoGrad
from timm.optim.nvnovograd import NvNovoGrad
from timm.optim.radam import RAdam
from timm.optim.rmsprop_tf import RMSpropTF
from timm.optim.sgdp import SGDP
from timm.optim.adabelief import AdaBelief
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if (name.endswith(".bias") or name.endswith(".affine_weight")
or name.endswith(".affine_bias") or name.endswith('.mean_shift')
or 'bias.' in name
or name in skip_list):
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def optimizer_kwargs(cfg):
""" cfg/argparse to kwargs helper
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
"""
kwargs = dict(
optimizer_name=cfg.opt,
learning_rate=cfg.lr,
weight_decay=cfg.weight_decay,
momentum=cfg.momentum)
if getattr(cfg, 'opt_eps', None) is not None:
kwargs['eps'] = cfg.opt_eps
if getattr(cfg, 'opt_betas', None) is not None:
kwargs['betas'] = cfg.opt_betas
if getattr(cfg, 'opt_args', None) is not None:
kwargs.update(cfg.opt_args)
return kwargs
def create_optimizer(args, model, filter_bias_and_bn=True):
""" Legacy optimizer factory for backwards compatibility.
NOTE: Use create_optimizer_v2 for new code.
"""
return create_optimizer_v2(
model,
**optimizer_kwargs(cfg=args),
filter_bias_and_bn=filter_bias_and_bn,
)
def create_optimizer_v2(
model: nn.Module,
optimizer_name: str = 'sgd',
learning_rate: Optional[float] = None,
weight_decay: float = 0.,
momentum: float = 0.9,
filter_bias_and_bn: bool = True,
**kwargs):
""" Create an optimizer.
TODO currently the model is passed in and all parameters are selected for optimization.
For more general use an interface that allows selection of parameters to optimize and lr groups, one of:
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion
* expose the parameters interface and leave it up to caller
Args:
model (nn.Module): model containing parameters to optimize
optimizer_name: name of optimizer to create
learning_rate: initial learning rate
weight_decay: weight decay to apply in optimizer
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
**kwargs: extra optimizer specific kwargs to pass through
Returns:
Optimizer
"""
opt_lower = optimizer_name.lower()
if weight_decay and filter_bias_and_bn:
skip = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
parameters = add_weight_decay(model, weight_decay, skip)
weight_decay = 0.
else:
parameters = model.parameters()
#if 'fused' in opt_lower:
# assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
opt_args = dict(lr=learning_rate, weight_decay=weight_decay, **kwargs)
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd' or opt_lower == 'nesterov':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == 'momentum':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
elif opt_lower == 'adam':
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == 'adabelief':
optimizer = AdaBelief(parameters, rectify=False, **opt_args)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, **opt_args)
elif opt_lower == 'nadam':
optimizer = Nadam(parameters, **opt_args)
elif opt_lower == 'radam':
optimizer = RAdam(parameters, **opt_args)
elif opt_lower == 'adamp':
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
elif opt_lower == 'sgdp':
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == 'adadelta':
optimizer = optim.Adadelta(parameters, **opt_args)
elif opt_lower == 'adafactor':
if not learning_rate:
opt_args['lr'] = None
optimizer = Adafactor(parameters, **opt_args)
elif opt_lower == 'adahessian':
optimizer = Adahessian(parameters, **opt_args)
elif opt_lower == 'rmsprop':
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == 'rmsproptf':
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == 'novograd':
optimizer = NovoGrad(parameters, **opt_args)
elif opt_lower == 'nvnovograd':
optimizer = NvNovoGrad(parameters, **opt_args)
#elif opt_lower == 'fusedsgd':
# opt_args.pop('eps', None)
# optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
#elif opt_lower == 'fusedmomentum':
# opt_args.pop('eps', None)
# optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args)
#elif opt_lower == 'fusedadam':
# optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
#elif opt_lower == 'fusedadamw':
# optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
#elif opt_lower == 'fusedlamb':
# optimizer = FusedLAMB(parameters, **opt_args)
#elif opt_lower == 'fusednovograd':
# opt_args.setdefault('betas', (0.95, 0.98))
# optimizer = FusedNovoGrad(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError
if len(opt_split) > 1:
if opt_split[0] == 'lookahead':
optimizer = Lookahead(optimizer)
return optimizer