-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathgraph_attention_transformer_oc20.py
386 lines (330 loc) · 15.9 KB
/
graph_attention_transformer_oc20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
'''
This file modifies `graph_attention_transfomer.py` based on
some properties of data in OC20.
1. Handling periodic boundary conditions (PBC)
2. [TODO] Predicting forces
3. Using tag (0: sub-surface, 1: surface, 2: adsorbate)
for extra input information.
4. Using OC20 registry to register models
5. Not using one-hot encoded atom type as node attributes since there are much more
atom types than QM9.
'''
import torch
from torch_cluster import radius_graph
from torch_scatter import scatter
import e3nn
from e3nn import o3
from e3nn.util.jit import compile_mode
from e3nn.nn.models.v2106.gate_points_message_passing import tp_path_exists
import torch_geometric
import math
from .instance_norm import EquivariantInstanceNorm
from .graph_norm import EquivariantGraphNorm
from .layer_norm import EquivariantLayerNormV2
from .radial_func import RadialProfile
from .tensor_product_rescale import (TensorProductRescale, LinearRS,
FullyConnectedTensorProductRescale, irreps2gate)
from .fast_activation import Activation, Gate
from .drop import EquivariantDropout, EquivariantScalarsDropout, DropPath
from .graph_attention_transformer import (get_norm_layer,
FullyConnectedTensorProductRescaleNorm,
FullyConnectedTensorProductRescaleNormSwishGate,
FullyConnectedTensorProductRescaleSwishGate,
DepthwiseTensorProduct, SeparableFCTP,
Vec2AttnHeads, AttnHeads2Vec,
GraphAttention, FeedForwardNetwork,
TransBlock,
NodeEmbeddingNetwork, EdgeDegreeEmbeddingNetwork, ScaledScatter
)
from .gaussian_rbf import GaussianRadialBasisLayer
from ocpmodels.common.registry import registry
from ocpmodels.common.utils import (
conditional_grad,
get_pbc_distances,
radius_graph_pbc,
)
_RESCALE = True
_USE_BIAS = True
# OC20
_MAX_ATOM_TYPE = 84
_NUM_TAGS = 3 # 0: sub-surface, 1: surface, 2: adsorbate
# Statistics of IS2RE 100K
_AVG_NUM_NODES = 77.81317
_AVG_DEGREE = 36.60622024536133
# IS2RE: 100k, max_radius = 5, max_neighbors = 100
_AVG_DEGREE = 23.395238876342773
# Statistics of IS2RE all
#_AVG_NUM_NODES = 77.74773422429224
#_AVG_DEGREE = 36.5836296081543
@registry.register_model("graph_attention_transformer")
class GraphAttentionTransformerOC20(torch.nn.Module):
'''
Differences from GraphAttentionTransformer:
1. Use `otf_graph` and `use_pbc`. `otf_graph` corresponds to whether to
build edges on the fly for each inputs. `use_pbc` corresponds to whether
to consider periodic boundary condition.
2. Use OC20 registry.
3. Use `max_neighbors` following models in OC20.
4. The first two input arguments (e.g., num_atoms and bond_feat_dim) are
not used. They are there because of trainer takes extra arguments.
'''
def __init__(self,
num_atoms,
bond_feat_dim,
num_targets,
irreps_node_embedding='256x0e+128x1e', num_layers=6,
irreps_node_attr='1x0e', use_node_attr=False,
irreps_sh='1x0e+1x1e',
max_radius=6.0,
number_of_basis=128, fc_neurons=[64, 64],
use_atom_edge_attr=False, irreps_atom_edge_attr='8x0e',
irreps_feature='512x0e',
irreps_head='32x0e+16x1e', num_heads=8, irreps_pre_attn=None,
rescale_degree=False, nonlinear_message=False,
irreps_mlp_mid='768x0e+384x1e',
norm_layer='layer',
alpha_drop=0.2, proj_drop=0.0, out_drop=0.0, drop_path_rate=0.0,
use_auxiliary_task=False, auxiliary_head_dropout=True,
use_attention_head=False,
otf_graph=False, use_pbc=True, max_neighbors=50):
super().__init__()
self.max_radius = max_radius
self.number_of_basis = number_of_basis
self.alpha_drop = alpha_drop
self.proj_drop = proj_drop
self.out_drop = out_drop
self.drop_path_rate = drop_path_rate
self.norm_layer = norm_layer
# for OC20
self.otf_graph= otf_graph
self.use_pbc = use_pbc
self.max_neighbors = max_neighbors
self.use_node_attr = use_node_attr
self.irreps_node_attr = o3.Irreps(irreps_node_attr)
#if not self.use_node_attr:
# assert self.irreps_node_attr == o3.Irreps('1x0e')
self.irreps_node_embedding = o3.Irreps(irreps_node_embedding)
self.lmax = self.irreps_node_embedding.lmax
self.irreps_feature = o3.Irreps(irreps_feature)
self.num_layers = num_layers
self.irreps_edge_attr = o3.Irreps(irreps_sh) if irreps_sh is not None \
else o3.Irreps.spherical_harmonics(self.lmax)
self.use_atom_edge_attr = use_atom_edge_attr
self.irreps_atom_edge_attr = o3.Irreps(irreps_atom_edge_attr)
temp = 0
if self.use_atom_edge_attr:
for _, ir in self.irreps_atom_edge_attr:
assert ir.is_scalar()
temp = 2 * self.irreps_atom_edge_attr.dim
self.fc_neurons = [temp + self.number_of_basis] + fc_neurons
self.irreps_head = o3.Irreps(irreps_head)
self.num_heads = num_heads
self.irreps_pre_attn = irreps_pre_attn
self.rescale_degree = rescale_degree
self.nonlinear_message = nonlinear_message
self.irreps_mlp_mid = o3.Irreps(irreps_mlp_mid)
self.atom_embed = NodeEmbeddingNetwork(self.irreps_node_embedding, _MAX_ATOM_TYPE)
self.tag_embed = NodeEmbeddingNetwork(self.irreps_node_embedding, _NUM_TAGS)
self.attr_embed = None
if self.use_node_attr:
self.attr_embed = NodeEmbeddingNetwork(self.irreps_node_attr, _MAX_ATOM_TYPE)
self.rbf = GaussianRadialBasisLayer(self.number_of_basis, cutoff=self.max_radius)
self.edge_deg_embed = EdgeDegreeEmbeddingNetwork(self.irreps_node_embedding,
self.irreps_edge_attr, self.fc_neurons, _AVG_DEGREE)
self.edge_src_embed = None
self.edge_dst_embed = None
if self.use_atom_edge_attr:
self.edge_src_embed = NodeEmbeddingNetwork(self.irreps_atom_edge_attr, _MAX_ATOM_TYPE)
self.edge_dst_embed = NodeEmbeddingNetwork(self.irreps_atom_edge_attr, _MAX_ATOM_TYPE)
self.blocks = torch.nn.ModuleList()
self.build_blocks()
self.norm = get_norm_layer(self.norm_layer)(self.irreps_feature)
self.out_dropout = None
if self.out_drop != 0.0:
self.out_dropout = EquivariantScalarsDropout(self.irreps_feature, self.out_drop)
self.irreps_feature_scalars = []
for mul, ir in self.irreps_feature:
if ir.l == 0 and ir.p == 1:
self.irreps_feature_scalars.append((mul, (ir.l, ir.p)))
self.irreps_feature_scalars = o3.Irreps(self.irreps_feature_scalars)
self.head = torch.nn.Sequential(
LinearRS(self.irreps_feature, self.irreps_feature_scalars, rescale=_RESCALE),
Activation(self.irreps_feature_scalars, acts=[torch.nn.SiLU()]),
LinearRS(self.irreps_feature_scalars, o3.Irreps('1x0e')))
self.scale_scatter = ScaledScatter(_AVG_NUM_NODES)
self.use_auxiliary_task = use_auxiliary_task
self.use_attention_head = use_attention_head
if self.use_auxiliary_task and not self.use_attention_head:
irreps_out_auxiliary = o3.Irreps('1x1o')
if o3.Irrep('1o') not in self.irreps_feature:
irreps_out_auxiliary = o3.Irreps('1x1e')
self.auxiliary_head = GraphAttention(self.irreps_feature,
self.irreps_node_attr, self.irreps_edge_attr, irreps_out_auxiliary,
self.fc_neurons,
self.irreps_head, self.num_heads, self.irreps_pre_attn,
self.rescale_degree, self.nonlinear_message,
alpha_drop=self.alpha_drop if auxiliary_head_dropout else 0.0,
proj_drop=0.0)
# Use `GraphAttention` for both energy and force prediction
if self.use_attention_head:
irreps_out = o3.Irreps('1x0e')
if self.use_auxiliary_task:
irreps_out = irreps_out + irreps_out_auxiliary
self.head = GraphAttention(self.irreps_feature,
self.irreps_node_attr, self.irreps_edge_attr, irreps_out,
self.fc_neurons,
self.irreps_head, self.num_heads, self.irreps_pre_attn,
self.rescale_degree, self.nonlinear_message,
alpha_drop=self.alpha_drop if auxiliary_head_dropout else 0.0,
proj_drop=0.0)
self.head_skip_connect = LinearRS(self.irreps_feature, irreps_out)
self.apply(self._init_weights)
def build_blocks(self):
for i in range(self.num_layers):
if i != (self.num_layers - 1):
irreps_block_output = self.irreps_node_embedding
else:
irreps_block_output = self.irreps_feature
blk = TransBlock(irreps_node_input=self.irreps_node_embedding,
irreps_node_attr=self.irreps_node_attr,
irreps_edge_attr=self.irreps_edge_attr,
irreps_node_output=irreps_block_output,
fc_neurons=self.fc_neurons,
irreps_head=self.irreps_head,
num_heads=self.num_heads,
irreps_pre_attn=self.irreps_pre_attn,
rescale_degree=self.rescale_degree,
nonlinear_message=self.nonlinear_message,
alpha_drop=self.alpha_drop,
proj_drop=self.proj_drop,
drop_path_rate=self.drop_path_rate,
irreps_mlp_mid=self.irreps_mlp_mid,
norm_layer=self.norm_layer)
self.blocks.append(blk)
def _init_weights(self, m):
if isinstance(m, torch.nn.Linear):
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.LayerNorm):
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
no_wd_list = []
named_parameters_list = [name for name, _ in self.named_parameters()]
for module_name, module in self.named_modules():
if (isinstance(module, torch.nn.Linear)
or isinstance(module, torch.nn.LayerNorm)
or isinstance(module, EquivariantLayerNormV2)
or isinstance(module, EquivariantInstanceNorm)
or isinstance(module, EquivariantGraphNorm)
or isinstance(module, GaussianRadialBasisLayer)):
for parameter_name, _ in module.named_parameters():
if isinstance(module, torch.nn.Linear) and 'weight' in parameter_name:
continue
global_parameter_name = module_name + '.' + parameter_name
assert global_parameter_name in named_parameters_list
no_wd_list.append(global_parameter_name)
return set(no_wd_list)
def _forward_otf_graph(self, data):
if self.otf_graph:
edge_index, cell_offsets, neighbors = radius_graph_pbc(
data, self.max_radius, self.max_neighbors
)
data.edge_index = edge_index
data.cell_offsets = cell_offsets
data.neighbors = neighbors
return data
else:
return data
def _forward_use_pbc(self, data):
pos = data.pos
batch = data.batch
if self.use_pbc:
out = get_pbc_distances(pos,
data.edge_index,
data.cell, data.cell_offsets,
data.neighbors,
return_offsets=True)
edge_index = out["edge_index"]
#dist = out["distances"]
offsets = out["offsets"]
edge_src, edge_dst = edge_index
edge_vec = pos.index_select(0, edge_src) - pos.index_select(0, edge_dst) + offsets
dist = edge_vec.norm(dim=1)
else:
edge_index = radius_graph(pos, r=self.max_radius,
batch=batch, max_num_neighbors=self.max_neighbors)
edge_src, edge_dst = edge_index
edge_vec = pos.index_select(0, edge_src) - pos.index_select(0, edge_dst)
dist = edge_vec.norm(dim=1)
offsets = None
return edge_index, edge_vec, dist, offsets
def forward(self, data):
# Following OC20 models
data = self._forward_otf_graph(data)
edge_index, edge_vec, edge_length, offsets = self._forward_use_pbc(data)
batch = data.batch
edge_src, edge_dst = edge_index[0], edge_index[1]
edge_sh = o3.spherical_harmonics(l=self.irreps_edge_attr,
x=edge_vec, normalize=True, normalization='component')
# Following Graphoformer, which encodes both atom type and tag
atomic_numbers = data.atomic_numbers.long()
atom_embedding, atom_attr, atom_onehot = self.atom_embed(atomic_numbers)
tags = data.tags.long()
tag_embedding, _, _ = self.tag_embed(tags)
edge_length_embedding = self.rbf(edge_length, atomic_numbers,
edge_src, edge_dst)
if self.use_atom_edge_attr:
src_attr, _, _ = self.edge_src_embed(atomic_numbers)
dst_attr, _, _ = self.edge_dst_embed(atomic_numbers)
edge_length_embedding = torch.cat((src_attr[edge_src],
dst_attr[edge_dst], edge_length_embedding), dim=1)
edge_degree_embedding = self.edge_deg_embed(atom_embedding, edge_sh,
edge_length_embedding, edge_src, edge_dst, batch)
node_features = atom_embedding + tag_embedding + edge_degree_embedding
if self.attr_embed is not None:
node_attr, _, _ = self.attr_embed(atomic_numbers)
else:
node_attr = torch.ones_like(node_features.narrow(1, 0, 1))
for blk in self.blocks:
node_features = blk(node_input=node_features, node_attr=node_attr,
edge_src=edge_src, edge_dst=edge_dst, edge_attr=edge_sh,
edge_scalars=edge_length_embedding,
batch=batch)
node_features = self.norm(node_features, batch=batch)
if self.out_dropout is not None:
outputs = self.out_dropout(node_features)
else:
outputs = node_features
# When `self.use_attention_head` is True,
# use GraphAttention for energy and force prediction
if self.use_attention_head:
outputs_skip = self.head_skip_connect(outputs)
outputs = self.head(node_input=outputs,
node_attr=node_attr, edge_src=edge_src, edge_dst=edge_dst,
edge_attr=edge_sh, edge_scalars=edge_length_embedding,
batch=batch)
outputs = outputs + outputs_skip
if self.use_auxiliary_task:
outputs_aux = outputs.narrow(1, 1, 3) # force
outputs = outputs.narrow(1, 0, 1) # energy
outputs = self.scale_scatter(outputs, batch, dim=0)
if self.use_auxiliary_task:
return outputs, outputs_aux
else:
return outputs
# FFN for energy prediction
outputs = self.head(outputs)
outputs = self.scale_scatter(outputs, batch, dim=0)
# auxiliary IS2RS
if self.use_auxiliary_task:
outputs_aux = self.auxiliary_head(node_input=node_features,
node_attr=node_attr, edge_src=edge_src, edge_dst=edge_dst,
edge_attr=edge_sh, edge_scalars=edge_length_embedding,
batch=batch)
return outputs, outputs_aux
return outputs
@property
def num_params(self):
return sum(p.numel() for p in self.parameters())