-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_mtl_git.py
892 lines (778 loc) · 32.7 KB
/
train_mtl_git.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
import os
import re
import json
import math
import copy
import torch
import codecs
import random
import pickle
import argparse
import tokenizer
import itertools
import numpy as np
import pandas as pd
from tqdm import tqdm, trange
import torch.nn as nn
from scipy import stats
from empath import Empath
from emoji import demojize
import torch.optim as optim
from scipy.stats import pearsonr
from nltk.tokenize import TweetTokenizer
from clean_tweets import clean_tweet
from normalize_tweets import normalizeTweet
# from transformers import AutoModel, AutoTokenizer
# from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import *
from torch.utils.data import TensorDataset, DataLoader, Dataset, random_split, ConcatDataset
from sklearn.metrics import accuracy_score, f1_score, label_ranking_average_precision_score, hamming_loss, jaccard_score
from fairseq.data.encoders.fastbpe import fastBPE
from fairseq.data import Dictionary
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', type=str, default="bert")
parser.add_argument('--use_gpu', action="store_true")
parser.add_argument('--gpu_id', type=int, default=1)
parser.add_argument('--encoder', type=str, default="bertweet")
parser.add_argument('--data_dir',type=str, default="data/")
parser.add_argument('--ec_type',type=str, default="SW")
parser.add_argument('--save_dir',type=str, default="bt_mtl")
parser.add_argument('--load_pickle', type=str, default=None)
parser.add_argument('--save_pickle', action="store_true")
parser.add_argument('--use_empath', action="store_true")
parser.add_argument('--lr', type=float, default=2e-5)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--save_policy', type=str, default="loss")
parser.add_argument('--activation', type=str, default="tanh")
parser.add_argument('--optim', type=str, default="adamw")
parser.add_argument('--l2', action="store_true")
parser.add_argument('--wd', type=float, default=0.01)
parser.add_argument('--use_scheduler', action="store_true")
parser.add_argument('--use_dropout', action="store_true")
parser.add_argument('--dropout_rate', type=float, default=0.2)
parser.add_argument('--VAD_wt', type=float, default=0.5)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--job_type', type=str, default="mtl")
parser.add_argument('--final_test', action="store_true")
parser.add_argument('--clip', action="store_true")
# parser.add_argument('--use_hierarchy', action="store_true")
# parser.add_argument('--use_successive_reg', action="store_true")
# parser.add_argument('--use_connection', action="store_true")
# parser.add_argument('--successive_reg_delta', type=float, default=0.1)
args = parser.parse_args()
SEED = args.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.autograd.set_detect_anomaly(True)
torch.multiprocessing.set_sharing_strategy('file_system')
EXP_NAME = args.exp_name
USE_GPU = args.use_gpu
GPU_ID = args.gpu_id
ENCODER = args.encoder
DATA_DIR = args.data_dir
if not os.path.exists(DATA_DIR) :
raise Exception("Incorrect path to dataset")
SAVE_DIR = args.save_dir
if not os.path.exists(os.path.join(SAVE_DIR, EXP_NAME)) :
os.makedirs(os.path.join(SAVE_DIR, EXP_NAME))
EC_TYPE = args.ec_type
LOAD_PICKLE = args.load_pickle
if LOAD_PICKLE is not None and not os.path.exists(LOAD_PICKLE) :
raise Exception("Incorrect path to dataset")
SAVE_PICKLE = args.save_pickle
EMPATH = args.use_empath
LR = args.lr
BATCH_SIZE = args.batch_size
SAVE_POLICY = args.save_policy
ACTIVATION = args.activation
OPTIM = args.optim
L2 = args.l2
WD = args.wd
USE_SCHEDULER = args.use_scheduler
USE_DROPOUT = args.use_dropout
DROPOUT_RATE = args.dropout_rate
VAD_wt = args.VAD_wt
EPOCHS = args.epochs
JOB_TYPE = args.job_type
FINAL_TEST = args.final_test
CLIP_NORM = args.clip
HIERARCHY = False #args.use_hierarchy
# SUCCESSIVE_REG = args.use_successive_reg
# USE_CONNECTION = args.use_connection
# SUCCESSIVE_REG_DELTA = args.successive_reg_delta
THRESHOLD = 0.33 if ACTIVATION == 'tanh' else 0.5
OUTPUT_FN = nn.Tanh() if ACTIVATION == 'tanh' else nn.Sigmoid()
DEVICE = f"cuda:{GPU_ID}" if torch.cuda.is_available() and USE_GPU else "cpu"
params = {
"EXP_NAME" : EXP_NAME,
"USE_GPU " : USE_GPU,
"DEVICE": DEVICE,
"ENCODER" : ENCODER,
"DATA_DIR" : DATA_DIR,
"SAVE_DIR" : SAVE_DIR,
"EC_TYPE" : EC_TYPE,
"LOAD_PICKLE": LOAD_PICKLE,
"SAVE_PICKLE": SAVE_PICKLE,
"EMPATH" : EMPATH,
"LR" : LR,
"BATCH_SIZE" : BATCH_SIZE,
"SAVE_POLICY" : SAVE_POLICY,
"ACTIVATION" : ACTIVATION,
# "OUTPUT_FN" : OUTPUT_FN,
"THRESHOLD" : THRESHOLD,
"OPTIM" : OPTIM,
"L2" : L2,
"WD" : WD,
"USE_SCHEDULER" : USE_SCHEDULER,
"USE_DROPOUT" : USE_DROPOUT,
"DROPOUT_RATE" : DROPOUT_RATE,
"VAD_wt": VAD_wt,
"EPOCHS" : EPOCHS,
"JOB_TYPE" : JOB_TYPE,
"FINAL_TEST" : FINAL_TEST,
"CLIP_NORM" : CLIP_NORM,
# "HIERARCHY" : HIERARCHY,
# "SUCCESSIVE_REG" : SUCCESSIVE_REG,
# "USE_CONNECTION" : USE_CONNECTION,
# "SUCCESSIVE_REG_DELTA" : SUCCESSIVE_REG_DELTA
}
print(json.dumps(params, indent=4))
with open(f"{SAVE_DIR}/{EXP_NAME}/hp.json","w") as fin :
json.dump(params, fin, indent=4)
tweetconfig = RobertaConfig.from_pretrained("/BERTweet_base_transformers/config.json")
if ENCODER == 'bertweet' :
# parser = argparse.ArgumentParser()
parser.add_argument('--bpe-codes',
default="/BERTweet_base_transformers/bpe.codes",
required=False,
type=str,
help='path to fastBPE BPE'
)
args = parser.parse_args()
bpe = fastBPE(args)
# Load the dictionary
vocab = Dictionary()
vocab.add_from_file("/BERTweet_base_transformers/dict.txt")
def encode_plus(text,
add_special_tokens=True,
max_length=32,
pad_to_max_length=True,
return_attention_mask=True):
words = bpe.encode(text)
if pad_to_max_length:
if len(words.split()) > (max_length - 2):
words = ' '.join(words.split()[:(max_length - 2)])
if add_special_tokens:
subwords = '<s> ' + words + ' </s>'
else:
subwords = words
input_ids = vocab.encode_line(subwords, append_eos=False, add_if_not_exist=False).long().tolist()
tokens_len = len(input_ids)
if pad_to_max_length:
pad_len = max_length - tokens_len
padding = [1] * pad_len
input_ids.extend(padding)
if return_attention_mask:
pad_len = max_length - tokens_len
attention_mask = [1] * tokens_len
attention_mask.extend([0] * pad_len)
return {'input_ids': torch.tensor([input_ids], dtype=torch.long),
'attention_mask': torch.tensor([attention_mask], dtype=torch.float32)}
class LexiconFeatures() :
def __init__(self):
self.lexicon = Empath()
def tokenize(self, text):
text = [str(w) for w in tokenizer(text)]
return text
def get_features(self, text):
features = list(self.lexicon.analyze(text,normalize=True).values())
features = torch.as_tensor([features])
return(features)
def parse_sentences(self, sentences) :
temp = []
for i in tqdm(range(len(sentences))):
sent = sentences[i]
temp.append(self.get_features(sent))
temp = torch.cat(temp, dim=0)
print("liwc features: {}".format(temp.shape))
return temp
class DatasetModule(Dataset) :
def __init__(self, PATH, category) :
if category == 'emobank' :
self.data_vad = pd.read_csv(PATH).to_dict(orient="records")
elif 'AIT' in EC_TYPE :
self.data_ec = pd.read_table(PATH, sep='\t').to_dict(orient="records")
else :
self.data_ec = pd.read_csv(PATH).to_dict(orient="records")
self.category = category
# if ENCODER == 'bert' :
# self.tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
# else :
# self.tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
if ENCODER == 'bert' :
self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
elif ENCODER == 'roberta' :
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
if self.category == 'emobank' :
print("Loading VAD...")
self.get_emobank()
else :
print("Loading Senwave...")
self.get_senwave()
def get_emobank(self) :
self.sentences = []
self.targets = []
self.emotions = ["V", "A", "D"]
for i in tqdm(range(len(self.data_vad))) :
item = self.data_vad[i]
orig_tweet = item['text'].strip()
orig_tweet = orig_tweet.replace("’","'")
orig_tweet = orig_tweet.replace("\n"," ")
orig_tweet = re.sub(r'\s\s+', r' ', orig_tweet)
orig_tweet = ' '.join(orig_tweet.split()).strip()
if ENCODER == 'bertweet' :
cleaned_tweet = normalizeTweet(orig_tweet)
else :
cleaned_tweet = clean_tweet(item['text'])
if cleaned_tweet == "" : continue
self.sentences.append(cleaned_tweet)
self.targets.append(torch.tensor([float(item[k]) for k in self.emotions], dtype=torch.float))
self.encode()
if EMPATH :
self.lexicon_features = LexiconFeatures().parse_sentences(self.sentences)
print("Dataset size: {}".format(len(self.sentences)))
self.emobank = True
def get_senwave(self) :
self.sentences = []
self.targets = []
self.targets_one_hot = []
if 'AIT' in EC_TYPE :
self.emotions = ["anger", "anticipation", "disgust", "fear", "joy", "love", "optimism", "pessimism", "sadness", "surprise", "trust"]
else:
self.emotions = ["Thankful", "Anxious", "Annoyed", "Denial","Joking", "Empathetic", "Optimistic", "Pessimistic", "Sad", "Surprise", "Official report"]
for i in tqdm(range(len(self.data_ec))) :
item = self.data_ec[i]
orig_tweet = item['Tweet'].strip()
orig_tweet = orig_tweet.replace("’","'")
orig_tweet = orig_tweet.replace("\n"," ")
orig_tweet = re.sub(r'\s\s+', r' ', orig_tweet)
orig_tweet = ' '.join(orig_tweet.split()).strip()
if ENCODER == 'bertweet' :
cleaned_tweet = normalizeTweet(orig_tweet)
else :
cleaned_tweet = clean_tweet(orig_tweet)
if cleaned_tweet == "" : continue
self.sentences.append(cleaned_tweet)
self.targets.append(self.get_target([item[k] for k in self.emotions]))
self.targets_one_hot.append(torch.tensor([item[k] for k in self.emotions], dtype=torch.float))
self.encode()
if EMPATH :
self.lexicon_features = LexiconFeatures().parse_sentences(self.sentences)
print("Dataset size: {}".format(len(self.sentences)))
self.emobank = False
def __len__(self) :
return len(self.sentences)
def __getitem__(self, idx) :
one_hot = self.targets[idx]
if not self.emobank :
one_hot = self.targets_one_hot[idx]
if EMPATH :
# return self.input_ids[idx], self.attention_masks[idx], self.token_type_ids[idx], self.targets[idx], self.source_lengths[idx], one_hot, self.lexicon_features[idx]
return self.input_ids[idx], self.attention_masks[idx], self.targets[idx], one_hot, self.lexicon_features[idx]
else :
# return self.input_ids[idx], self.attention_masks[idx], self.token_type_ids[idx], self.targets[idx], self.source_lengths[idx], one_hot
return self.input_ids[idx], self.attention_masks[idx], self.targets[idx], one_hot
def encode(self) :
self.input_ids = []
self.attention_masks = []
# self.token_type_ids = []
if ENCODER == 'bertweet' :
for sent in self.sentences :
encoded_dict = encode_plus(
sent,
add_special_tokens=True,
max_length=32,
pad_to_max_length=True,
return_attention_mask=True)
self.input_ids.append(encoded_dict['input_ids'])
# print(encoded_dict['input_ids'])
self.attention_masks.append(encoded_dict['attention_mask'])
else :
# self.max_len, self.source_lengths = self.max_length()
for sent in self.sentences :
encoded_dict = self.tokenizer.encode_plus(sent,
add_special_tokens=True,
# max_length=self.max_len,
max_length=32,
padding="max_length",
truncation = True,
return_attention_mask = True,
return_tensors = 'pt')
# return_token_type_ids = True,
self.input_ids.append(encoded_dict['input_ids'])
# print(encoded_dict['input_ids'])
self.attention_masks.append(encoded_dict['attention_mask'])
# self.token_type_ids.append(encoded_dict['token_type_ids'])
# self.source_lengths = torch.LongTensor(self.source_lengths)
# print("source_lengths: {}".format(self.source_lengths.shape))
self.input_ids = torch.cat(self.input_ids, dim=0)
self.attention_masks = torch.cat(self.attention_masks, dim=0)
# self.token_type_ids = torch.cat(self.token_type_ids, dim=0)
# print("input ids: {} attention_masks: {} token_type_ids: {}".format(self.input_ids.shape, self.attention_masks.shape, self.token_type_ids.shape))
print("input ids: {} attention_masks: {}".format(self.input_ids.shape, self.attention_masks.shape))
def max_length(self) :
max_len = 0
lengths = []
for sent in self.sentences:
input_ids = self.tokenizer.encode(sent, add_special_tokens=True)
max_len = max(max_len, len(input_ids))
lengths.append(min(512, len(input_ids)))
max_len = min(512, max_len)
print(f"Max Length:{max_len}")
return max_len, lengths
def get_target(self, x) :
temp = []
for i,v in enumerate(x) :
if v==1:
temp.append(i)
temp += [-1]*(11-len(temp))
return torch.tensor(temp)
class Net(nn.Module) :
def __init__(self, EMBED_SIZE=768) :
super(Net, self).__init__()
# if ENCODER == 'bert' :
# self.bert = AutoModel.from_pretrained("bert-base-cased")
# self.embed_size = 768
# else :
# self.bert = AutoModel.from_pretrained("vinai/bertweet-base")
# self.embed_size = 768
if ENCODER == 'bert':
self.bert = BertModel.from_pretrained("bert-base-cased", output_attentions=True)
elif ENCODER == 'roberta':
self.bert = RobertaModel.from_pretrained("roberta-base", output_attentions=True)
elif ENCODER == 'bertweet':
self.bert = RobertaModel.from_pretrained("/BERTweet_base_transformers/model.bin", config=tweetconfig)
self.embed_size = 768
# if EMPATH :
# self.embed_size += 194
print(f"Embeddings length: {self.embed_size}")
self.num_classes_1 = 3
self.num_classes_2 = 11
if JOB_TYPE == "mtl" :
self.fc_1 = nn.Linear(self.embed_size, 256)
if EMPATH :
self.fc_2 = nn.Linear(256 + 194, self.num_classes_1)
self.fc_3 = nn.Linear(256 + 194, self.num_classes_2)
else :
self.fc_2 = nn.Linear(256, self.num_classes_1)
self.fc_3 = nn.Linear(256, self.num_classes_2)
# if HIERARCHY :
# self.fc_3 = nn.Linear(self.embed_size + self.num_classes_1, self.num_classes_2)
# else :
# self.fc_3 = nn.Linear(self.embed_size, self.num_classes_2)
self.layers = [self.fc_1, self.fc_2, self.fc_3]
elif JOB_TYPE == "stl_emotion" :
self.fc_1 = nn.Linear(self.embed_size, 256)
if EMPATH :
self.fc_3 = nn.Linear(256 + 194, self.num_classes_2)
else :
self.fc_3 = nn.Linear(256, self.num_classes_2)
self.layers = [self.fc_1, self.fc_3]
elif JOB_TYPE == "stl_VAD" :
self.fc_1 = nn.Linear(self.embed_size, 256)
if EMPATH :
self.fc_2 = nn.Linear(256 + 194, self.num_classes_1)
else :
self.fc_2 = nn.Linear(256, self.num_classes_1)
self.layers = [self.fc_1, self.fc_2]
if USE_DROPOUT :
self.dropout = nn.Dropout(p=DROPOUT_RATE)
# def forward(self,input_ids, attn_masks, token_type_ids, source_lengths, lexicon_features, category=None) :
def forward(self, input_ids, attn_masks, lexicon_features, category=None) :
sentences = self.bert(input_ids, attn_masks)[0]
sentences = sentences[:,0,:]
if JOB_TYPE == "stl_emotion" :
return self.forward_emotions(sentences, lexicon_features)
elif JOB_TYPE == "stl_VAD" :
return self.forward_VAD(sentences, lexicon_features)
else :
sentences = self.forward_VAD(sentences, lexicon_features) if category == "VAD" else self.forward_emotions(sentences, lexicon_features)
return sentences
def forward_VAD(self, sentences, lexicon_features) :
sentences = self.fc_1(sentences)
if EMPATH :
sentences = torch.cat((sentences, lexicon_features), dim=-1)
# sentences = torch.cat([sentences, lexicon_features], axis=1)
if USE_DROPOUT :
sentences = self.dropout(sentences)
sentences = self.fc_2(sentences)
sentences = OUTPUT_FN(sentences)
if ACTIVATION == 'bce' :
sentences = sentences*4.0+1.0
else :
sentences = sentences*2.0+3.0
return sentences
def forward_emotions(self, sentences, lexicon_features) :
# if HIERARCHY :
# VAD_predictions = self.forward_VAD(sentences)
# sentences = torch.cat((sentences, VAD_predictions), dim=0)
# if not USE_CONNECTION :
# sentences = sentences.detach()
sentences = self.fc_1(sentences)
if EMPATH :
sentences = torch.cat((sentences, lexicon_features), dim=-1)
# sentences = torch.cat([sentences, lexicon_features], axis=1)
if USE_DROPOUT :
sentences = self.dropout(sentences)
sentences = self.fc_3(sentences)
sentences = OUTPUT_FN(sentences)
return sentences
def init_weights(self, dist='normal', bias_val=0.01):
# refence used: https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch
for m in self.layers :
if dist == 'uniform':
torch.nn.init.xavier_uniform(m.weight)
elif dist == 'normal':
torch.nn.init.xavier_normal_(m.weight)
m.bias.data.fill_(bias_val)
def accuracy_emotions(output, target) :
lrap = label_ranking_average_precision_score(target.cpu(), output.cpu())
output = (output >= THRESHOLD).long().cpu()
target = target.cpu().long()
micro_f1 = f1_score(target, output, average='micro')
macro_f1 = f1_score(target, output, average='macro')
acc = (output==target).float().sum()/(torch.ones_like(output).sum())
hamming = hamming_loss(target, output)
jacc = jaccard_score(target, output, average='samples')
return torch.tensor([acc, micro_f1, macro_f1, jacc, lrap, hamming])
def accuracy_VAD(output, target) :
output = output.cpu()
target = target.cpu()
output = [pearsonr(target[:,i], output[:,i])[0] for i in range(output.shape[1])]
return torch.tensor(output)
def run_model(model, batch, category) :
input_ids = batch[0].to(DEVICE)
attn_masks = batch[1].to(DEVICE)
# token_type_ids = batch[2].to(DEVICE)
# source_lengths = batch[4].to(DEVICE)
lexicon_features = None
if EMPATH :
# lexicon_features = batch[6].to(DEVICE)
lexicon_features = batch[4].to(DEVICE)
# return model(input_ids, attn_masks, token_type_ids, source_lengths, lexicon_features, category)
return model(input_ids, attn_masks, lexicon_features, category)
if __name__ == "__main__":
senwave_train = None
senwave_val = None
senwave_test = None
emobank_train = None
emobank_val = None
emobank_test = None
if LOAD_PICKLE is not None :
with open(LOAD_PICKLE, "rb") as fin :
temp_dict = pickle.load(fin)
senwave_train = temp_dict["senwave_train"]
senwave_val = temp_dict["senwave_val"]
senwave_test = temp_dict["senwave_test"]
senwave_trainval = temp_dict["senwave_trainval"]
emobank_train = temp_dict["emobank_train"]
emobank_val = temp_dict["emobank_val"]
emobank_test = temp_dict["emobank_test"]
emobank_trainval = temp_dict["emobank_trainval"]
else :
if 'AIT' in EC_TYPE :
senwave_train = DatasetModule(PATH=f"{DATA_DIR}/AIT/train.txt", category="senwave")
senwave_val = DatasetModule(PATH=f"{DATA_DIR}/AIT/val.txt", category="senwave")
senwave_test = DatasetModule(PATH=f"{DATA_DIR}/AIT/test.txt", category="senwave")
senwave_trainval = DatasetModule(PATH=f"{DATA_DIR}/AIT/train_val.txt", category="senwave")
else:
senwave_train = DatasetModule(PATH=f"{DATA_DIR}/train.csv", category="senwave")
senwave_val = DatasetModule(PATH=f"{DATA_DIR}/val.csv", category="senwave")
senwave_test = DatasetModule(PATH=f"{DATA_DIR}/test.csv", category="senwave")
senwave_trainval = DatasetModule(PATH=f"{DATA_DIR}/train_val.csv", category="senwave")
emobank_train = DatasetModule(PATH=f"{DATA_DIR}/Emobank/train.csv",category="emobank")
emobank_val = DatasetModule(PATH=f"{DATA_DIR}/Emobank/val.csv",category="emobank")
emobank_test = DatasetModule(PATH=f"{DATA_DIR}/Emobank/test.csv",category="emobank")
emobank_trainval = DatasetModule(PATH=f"{DATA_DIR}/Emobank/train_val.csv",category="emobank")
if SAVE_PICKLE :
print("Saving data.....")
temp_dict = {
"senwave_train" : senwave_train,
"senwave_val" : senwave_val,
"senwave_test" : senwave_test,
"senwave_trainval" : senwave_trainval,
"emobank_train" : emobank_train,
"emobank_val" : emobank_val,
"emobank_test" : emobank_test,
"emobank_trainval" : emobank_trainval
}
if 'AIT' in EC_TYPE :
with open(f"dataset_{ENCODER}_ait.pkl","wb") as fin :
pickle.dump(temp_dict, fin)
else :
with open(f"dataset_{ENCODER}.pkl","wb") as fin :
pickle.dump(temp_dict, fin)
if (FINAL_TEST) :
print("Loading training and testing data...")
senwave_train = DataLoader(senwave_trainval, shuffle=True, batch_size=BATCH_SIZE, num_workers=4)
emobank_train = DataLoader(emobank_trainval, shuffle=True, batch_size=BATCH_SIZE, num_workers=4)
senwave_test = DataLoader(senwave_test, shuffle=False, batch_size=len(senwave_test), num_workers=4)
emobank_test = DataLoader(emobank_test, shuffle=False, batch_size=len(emobank_test), num_workers=4)
else :
print("Loading training and validation data...")
senwave_train = DataLoader(senwave_train, shuffle=True, batch_size=BATCH_SIZE, num_workers=4)
senwave_val = DataLoader(senwave_val, shuffle=False, batch_size=BATCH_SIZE, num_workers=4)
emobank_train = DataLoader(emobank_train, shuffle=True, batch_size=BATCH_SIZE, num_workers=4)
emobank_val = DataLoader(emobank_val,shuffle=False, batch_size=BATCH_SIZE, num_workers=4)
model = Net().to(DEVICE)
print("THE DEVICE BEING USED IS: " + str(DEVICE))
model.init_weights(dist='normal')
loss_fn = nn.BCELoss() if ACTIVATION == 'bce' else nn.MultiLabelMarginLoss()
VAD_loss_fn = nn.MSELoss()
optimizer = None
if OPTIM == 'adamw' :
if L2 :
optimizer = AdamW(model.parameters(), lr=LR, weight_decay=WD)
else :
optimizer = AdamW(model.parameters(), lr=LR)
else :
if L2 :
optimizer = optim.Adam(model.parameters(), lr=LR, weight_decay=WD)
else :
optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = None
if USE_SCHEDULER :
# total_steps = max(len(senwave_train), len(emobank_train)) * EPOCHS
total_steps = len(senwave_train) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = int(total_steps*0.06),
num_training_steps = total_steps)
save_model_path = f"{SAVE_DIR}/{EXP_NAME}"
training_stats = []
best_save = 1e8
best_macf1 = 1e-8
best_stats = None
for epoch_i in trange(EPOCHS) :
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, EPOCHS))
train_loss = {"VAD":[], "Emotion":[]}
model.train()
if JOB_TYPE == "stl_emotion" :
print("Training emotion...")
for (i, senwave_batch) in enumerate(senwave_train) :
model.zero_grad()
# target = senwave_batch[5].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[3].to(DEVICE)
target = senwave_batch[3].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[2].to(DEVICE)
senwave_output = run_model(model, senwave_batch, "Emotion")
emotion_loss = loss_fn(senwave_output, target)
emotion_loss.backward()
if CLIP_NORM:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
if i%50 == 0 :
print("Batch: {} Emotion_loss: {} ".format(i, emotion_loss))
train_loss["Emotion"].append(emotion_loss.item())
if USE_SCHEDULER :
scheduler.step()
print(f"Epoch {epoch_i} completed. Saving model..")
torch.save(model.state_dict(), f"{save_model_path}/epoch_{epoch_i}.pt")
elif JOB_TYPE == "stl_VAD" :
print("Training VAD...")
for (i, emobank_batch) in enumerate(emobank_train) :
model.zero_grad()
target = emobank_batch[3].to(DEVICE)
emobank_output = run_model(model, emobank_batch, "VAD")
VAD_loss = VAD_loss_fn(emobank_output, target.float())
VAD_loss.backward()
if CLIP_NORM:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
if i%50 == 0 :
print("Batch: {} VAD_loss: {} ".format(i, VAD_loss))
train_loss["VAD"].append(VAD_loss.item())
if USE_SCHEDULER :
scheduler.step()
print(f"Epoch {epoch_i} completed. Saving model..")
# torch.save(model.state_dict(), f"{save_model_path}/epoch_{epoch_i}.pt")
else :
num_batches = max(len(senwave_train), len(emobank_train))
senwave_ = list(enumerate(senwave_train))
emobank_ = list(enumerate(emobank_train))
VAD_loss, emotion_loss = None, None
history = None
print("Training emotion and VAD mtl...")
for i in trange(num_batches) :
model.zero_grad()
if HIERARCHY :
continue
# emobank_batch = emobank_[i%len(emobank_)][1]
# target = emobank_batch[3].to(DEVICE)
# emobank_output = run_model(model, emobank_batch, "VAD")
# VAD_loss = VAD_loss_fn(emobank_output, target.float())
# VAD_loss.backward()
# optimizer.step()
# model.zero_grad()
# senwave_batch = senwave_[i%len(senwave_)][1]
# # target = senwave_batch[5].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[3].to(DEVICE)
# target = senwave_batch[3].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[2].to(DEVICE)
# senwave_output = run_model(model, senwave_batch, "Emotion")
# emotion_loss = loss_fn(senwave_output, target)
# if USE_CONNECTION and SUCCESSIVE_REG and history is not None :
# loss = torch.norm(model.fc_1.weight-history.weight) + torch.norm(model.fc_1.bias-history.bias)
# emotion_loss += SUCCESSIVE_REG_DELTA*loss
# emotion_loss.backward()
# optimizer.step()
# history = (model.fc_1).clone()
else :
senwave_batch = senwave_[i%len(senwave_)][1]
# target = senwave_batch[5].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[3].to(DEVICE)
target = senwave_batch[3].to(DEVICE) if ACTIVATION == "bce" else senwave_batch[2].to(DEVICE)
senwave_output = run_model(model, senwave_batch, "Emotion")
emotion_loss = loss_fn(senwave_output, target)
emobank_batch = emobank_[i%len(emobank_)][1]
target = emobank_batch[3].to(DEVICE)
emobank_output = run_model(model, emobank_batch, "VAD")
VAD_loss = VAD_loss_fn(emobank_output, target.float())
loss = (VAD_wt*VAD_loss + (1-VAD_wt)*emotion_loss).float()
loss.backward()
if CLIP_NORM:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
if i%50 == 0 :
print("Batch: {} VAD_Loss: {} Emotion_loss: {} Total_Loss: {} ".format(i, VAD_loss, emotion_loss, VAD_loss+emotion_loss))
train_loss["VAD"].append(VAD_loss.item())
train_loss["Emotion"].append(emotion_loss.item())
if USE_SCHEDULER :
scheduler.step()
if (not FINAL_TEST) :
val_loss = {"VAD":[], "Emotion":[]}
val_acc = {"VAD":[], "Emotion":[]}
model.eval()
emotion_dict = {}
VAD_dict = {}
total_loss = 0.0
if JOB_TYPE == "stl_emotion" or JOB_TYPE == "mtl" :
print("Validating emotion...")
for i, batch in enumerate(senwave_val) :
with torch.no_grad() :
# target = batch[5].to(DEVICE) if ACTIVATION == "bce" else batch[3].to(DEVICE)
target = batch[3].to(DEVICE) if ACTIVATION == "bce" else batch[2].to(DEVICE)
output = run_model(model, batch, "Emotion")
loss = loss_fn(output, target)
# target = batch[5].to(DEVICE)
target = batch[3].to(DEVICE)
acc = accuracy_emotions(output, target)
val_loss["Emotion"].append(loss.item())
val_acc["Emotion"].append(acc)
temp = torch.stack(val_acc["Emotion"], dim=0).mean(dim=0).tolist()
emotion_dict = {
'Emotion training_loss' : sum(train_loss["Emotion"])/len(train_loss["Emotion"]),
'Emotion validation_loss' : sum(val_loss["Emotion"])/len(val_loss["Emotion"]),
'Emotion validation_acc': temp[0],
'Emotion validation_micro_f1': temp[1],
'Emotion validation_macro_f1': temp[2],
'Emotion validation_jacc': temp[3],
'Emotion validation_lrap': temp[4],
'Emotion validation_hamming': temp[5]
}
total_loss += sum(val_loss["Emotion"])/len(val_loss["Emotion"])
if JOB_TYPE == "stl_VAD" or JOB_TYPE == "mtl" :
print("Validating VAD...")
for i, batch in enumerate(emobank_val) :
with torch.no_grad() :
target = batch[3].to(DEVICE)
output = run_model(model, batch, "VAD")
loss = VAD_loss_fn(output, target)
acc = accuracy_VAD(output, target)
val_loss["VAD"].append(loss.item())
val_acc["VAD"].append(acc)
VAD_dict = {
'VAD training_loss' : sum(train_loss["VAD"])/len(train_loss["VAD"]),
'VAD validation_loss' : sum(val_loss["VAD"])/len(val_loss["VAD"]),
'VAD validation_r2' : torch.stack(val_acc["VAD"], dim=0).mean(dim=0).tolist(),
}
total_loss += sum(val_loss["VAD"])/len(val_loss["VAD"])
training_stats.append({**emotion_dict, **VAD_dict, "Total Validation Loss": total_loss})
print(json.dumps(training_stats[-1], indent=4))
if SAVE_POLICY == 'loss' :
if best_save > training_stats[-1]["Total Validation Loss"] :
best_save = training_stats[-1]["Total Validation Loss"]
best_stats = {**training_stats[-1], "epoch": epoch_i}
print(f"For saving policy : {SAVE_POLICY}, Saving the model : {epoch_i}")
else :
if best_macf1 < training_stats[-1]["Emotion validation_macro_f1"] :
best_macf1 = training_stats[-1]["Emotion validation_macro_f1"]
best_stats = {**training_stats[-1], "epoch": epoch_i}
print(f"For saving policy : {SAVE_POLICY}, Saving the model : {epoch_i}")
else :
emotion_dict = {}
VAD_dict = {}
if JOB_TYPE == "stl_emotion" or JOB_TYPE == "mtl" :
emotion_dict = {
'Emotion training_loss' : sum(train_loss["Emotion"])/len(train_loss["Emotion"]),
}
if JOB_TYPE == "stl_VAD" or JOB_TYPE == "mtl" :
VAD_dict = {
'VAD training_loss' : sum(train_loss["VAD"])/len(train_loss["VAD"]),
}
training_stats.append({**emotion_dict, **VAD_dict})
print(json.dumps(training_stats[-1], indent=4))
with open(f"{SAVE_DIR}/{EXP_NAME}/test.json","a") as fin :
json.dump(training_stats[-1], fin, indent=4)
# if (FINAL_TEST) :
test_loss = {"VAD":[], "Emotion":[]}
test_acc = {"VAD":[], "Emotion":[]}
model.eval()
emotion_dict = {}
VAD_dict = {}
total_loss = 0.0
if JOB_TYPE == "stl_emotion" or JOB_TYPE == "mtl" :
print("Testing emotion...")
for i, batch in enumerate(senwave_test) :
with torch.no_grad() :
# target = batch[5].to(DEVICE) if ACTIVATION == "bce" else batch[3].to(DEVICE)
target = batch[3].to(DEVICE) if ACTIVATION == "bce" else batch[2].to(DEVICE)
output = run_model(model, batch, "Emotion")
loss = loss_fn(output, target)
# target = batch[5].to(DEVICE)
target = batch[3].to(DEVICE)
acc = accuracy_emotions(output, target)
test_loss["Emotion"].append(loss.item())
test_acc["Emotion"].append(acc)
temp = torch.stack(test_acc["Emotion"], dim=0).mean(dim=0).tolist()
emotion_dict = {
'Emotion test_loss' : sum(test_loss["Emotion"])/len(test_loss["Emotion"]),
'Emotion test_acc': temp[0],
'Emotion test_micro_f1': temp[1],
'Emotion test_macro_f1': temp[2],
'Emotion test_jacc': temp[3],
'Emotion test_lrap': temp[4],
'Emotion test_hamming': temp[5]
}
total_loss += sum(test_loss["Emotion"])/len(test_loss["Emotion"])
if JOB_TYPE == "stl_VAD" or JOB_TYPE == "mtl" :
print("Testing VAD...")
for i, batch in enumerate(emobank_test) :
with torch.no_grad() :
target = batch[3].to(DEVICE)
output = run_model(model, batch, "VAD")
loss = VAD_loss_fn(output, target)
acc = accuracy_VAD(output, target)
test_loss["VAD"].append(loss.item())
test_acc["VAD"].append(acc)
VAD_dict = {
'VAD test_loss' : sum(test_loss["VAD"])/len(test_loss["VAD"]),
'VAD test_r2' : torch.stack(test_acc["VAD"], dim=0).mean(dim=0).tolist(),
}
total_loss += sum(test_loss["VAD"])/len(test_loss["VAD"])
test_stats = ({**emotion_dict, **VAD_dict, "Total test Loss": total_loss})
print(json.dumps(test_stats, indent=4))
with open(f"{SAVE_DIR}/{EXP_NAME}/test.json","a") as fin :
json.dump(test_stats, fin, indent=4)
# else :
# with open(f"{SAVE_DIR}/{EXP_NAME}/test.json","a") as fin :
# json.dump(best_stats, fin, indent=4)