forked from DIR-LAB/deep-batch-scheduler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHPCSimPickJobs.py
946 lines (804 loc) · 42.2 KB
/
HPCSimPickJobs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
from job import Job, Workloads
from cluster import Cluster
import os
import math
import json
import time
import sys
import random
from random import shuffle
import numpy as np
import tensorflow as tf
import scipy.signal
import gym
from gym import spaces
from gym.spaces import Box, Discrete
from gym.utils import seeding
MAX_QUEUE_SIZE = 128
MLP_SIZE = 256
MAX_WAIT_TIME = 12 * 60 * 60 # assume maximal wait time is 12 hours.
MAX_RUN_TIME = 12 * 60 * 60 # assume maximal runtime is 12 hours
# each job has three features: wait_time, requested_node, runtime, machine states,
JOB_FEATURES = 8
DEBUG = False
JOB_SEQUENCE_SIZE = 256
SKIP_TIME = 360 # skip 60 seconds
def combined_shape(length, shape=None):
if shape is None:
return (length,)
return (length, shape) if np.isscalar(shape) else (length, *shape)
def placeholder(dim=None):
return tf.placeholder(dtype=tf.float32, shape=combined_shape(None,dim))
def placeholders(*args):
return [placeholder(dim) for dim in args]
def placeholder_from_space(space):
if isinstance(space, Box):
return placeholder(space.shape)
elif isinstance(space, Discrete):
return tf.placeholder(dtype=tf.int32, shape=(None,))
raise NotImplementedError
def placeholders_from_spaces(*args):
return [placeholder_from_space(space) for space in args]
def get_vars(scope=''):
return [x for x in tf.trainable_variables() if scope in x.name]
def count_vars(scope=''):
v = get_vars(scope)
return sum([np.prod(var.shape.as_list()) for var in v])
def discount_cumsum(x, discount):
return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]
class HPCEnv(gym.Env):
def __init__(self,shuffle=False, backfil=False, skip=False, job_score_type=0, batch_job_slice=0, build_sjf=False): # do nothing and return. A workaround for passing parameters to the environment
super(HPCEnv, self).__init__()
print("Initialize Simple HPC Env")
self.action_space = spaces.Discrete(MAX_QUEUE_SIZE)
self.observation_space = spaces.Box(low=0.0, high=1.0,
shape=(JOB_FEATURES * MAX_QUEUE_SIZE,),
dtype=np.float32)
self.job_queue = []
self.running_jobs = []
self.visible_jobs = []
self.pairs = []
self.current_timestamp = 0
self.start = 0
self.next_arriving_job_idx = 0
self.last_job_in_batch = 0
self.num_job_in_batch = 0
self.start_idx_last_reset = 0
self.loads = None
self.cluster = None
self.bsld_algo_dict = {}
self.scheduled_rl = {}
self.penalty = 0
self.pivot_job = False
self.scheduled_scores = []
self.enable_preworkloads = False
self.pre_workloads = []
self.shuffle = shuffle
self.backfil = backfil
self.skip = skip
# 0: Average bounded slowdown, 1: Average waiting time
# 2: Average turnaround time, 3: Resource utilization
self.job_score_type = job_score_type
self.batch_job_slice = batch_job_slice
self.build_sjf = build_sjf
self.sjf_scores = []
#@profile
def my_init(self, workload_file = '', sched_file = ''):
print ("loading workloads from dataset:", workload_file)
self.loads = Workloads(workload_file)
self.cluster = Cluster("Cluster", self.loads.max_nodes, self.loads.max_procs/self.loads.max_nodes)
self.penalty_job_score = JOB_SEQUENCE_SIZE * self.loads.max_exec_time / 10
if self.build_sjf: #this is for trajectory filtering.
#calculate SJF scores for all sample sequence and save them here
index = 0
if self.batch_job_slice == 0:
max_index = self.loads.size() - JOB_SEQUENCE_SIZE - 1
else:
max_index = min(self.batch_job_slice, self.loads.size()) - JOB_SEQUENCE_SIZE - 1
print("max index... initializing SJF Score Array", max_index)
while index <= max_index:
index += 1
if index % 100 == 0:
print("index", index)
self.cluster.reset()
self.loads.reset()
self.job_queue = []
self.running_jobs = []
self.visible_jobs = []
self.pairs = []
self.current_timestamp = 0
self.start = 0
self.next_arriving_job_idx = 0
self.last_job_in_batch = 0
self.num_job_in_batch = 0
self.scheduled_rl = {}
self.penalty = 0
self.pivot_job = False
self.scheduled_scores = []
job_sequence_size = JOB_SEQUENCE_SIZE
self.pre_workloads = []
self.start = index;
self.start_idx_last_reset = self.start
self.num_job_in_batch = job_sequence_size
self.last_job_in_batch = self.start + self.num_job_in_batch
self.current_timestamp = self.loads[self.start].submit_time
self.job_queue.append(self.loads[self.start])
self.next_arriving_job_idx = self.start + 1
if self.enable_preworkloads:
self.gen_preworkloads(job_sequence_size + self.np_random.randint(job_sequence_size))
self.sjf_scores.append(sum(self.schedule_curr_sequence_reset(self.sjf_score).values()))
#print(self.sjf_scores)
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def f1_score(self, job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
# run_time = job.run_time
return (np.log10(request_time if request_time>0 else 0.1) * request_processors + 870 * np.log10(submit_time if submit_time>0 else 0.1))
def f2_score(self, job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
# run_time = job.run_time
# f2: r^(1/2)*n + 25600 * log10(s)
return (np.sqrt(request_time) * request_processors + 25600 * np.log10(submit_time))
def f3_score(self, job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
# run_time = job.run_time
# f3: r * n + 6860000 * log10(s)
return (request_time * request_processors + 6860000 * np.log10(submit_time))
def f4_score(self, job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
# run_time = job.run_time
# f4: r * sqrt(n) + 530000 * log10(s)
return (request_time * np.sqrt(request_processors) + 530000 * np.log10(submit_time))
def sjf_score(self, job):
# run_time = job.run_time
request_time = job.request_time
submit_time = job.submit_time
# if request_time is the same, pick whichever submitted earlier
return (request_time, submit_time)
def smallest_score(self, job):
request_processors = job.request_number_of_processors
submit_time = job.submit_time
# if request_time is the same, pick whichever submitted earlier
return (request_processors, submit_time)
def wfp_score(self, job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
waiting_time = job.scheduled_time-job.submit_time
return -np.power(float(waiting_time)/request_time, 3)*request_processors
def uni_score(self,job):
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
waiting_time = job.scheduled_time-job.submit_time
return -(waiting_time+1e-15)/(np.log2(request_processors+1e-15)*request_time)
def fcfs_score(self, job):
submit_time = job.submit_time
return submit_time
def gen_preworkloads(self, size):
# Generate some running jobs to randomly fill the cluster.
# size = self.np_random.randint(2 * job_sequence_size)
running_job_size = size
for i in range(running_job_size):
_job = self.loads[self.start - i - 1]
req_num_of_processors = _job.request_number_of_processors
runtime_of_job = _job.request_time
job_tmp = Job()
job_tmp.job_id = (-1 - i) # to be different from the normal jobs; normal jobs have a job_id >= 0
job_tmp.request_number_of_processors = req_num_of_processors
job_tmp.run_time = runtime_of_job
if self.cluster.can_allocated(job_tmp):
self.running_jobs.append(job_tmp)
job_tmp.scheduled_time = max(0, (self.current_timestamp - random.randint(0, max(runtime_of_job, 1))))
# job_tmp.scheduled_time = max(0, (self.current_timestamp - runtime_of_job/2))
job_tmp.allocated_machines = self.cluster.allocate(job_tmp.job_id, job_tmp.request_number_of_processors)
self.pre_workloads.append(job_tmp)
else:
break
def refill_preworkloads(self):
for _job in self.pre_workloads:
self.running_jobs.append(_job)
_job.allocated_machines = self.cluster.allocate(_job.job_id, _job.request_number_of_processors)
#@profile
def reset(self):
self.cluster.reset()
self.loads.reset()
self.job_queue = []
self.running_jobs = []
self.visible_jobs = []
self.pairs = []
self.current_timestamp = 0
self.start = 0
self.next_arriving_job_idx = 0
self.last_job_in_batch = 0
self.num_job_in_batch = 0
self.scheduled_rl = {}
self.penalty = 0
self.pivot_job = False
self.scheduled_scores = []
job_sequence_size = JOB_SEQUENCE_SIZE
self.pre_workloads = []
assert self.batch_job_slice == 0 or self.batch_job_slice>=job_sequence_size
if self.build_sjf:
done = False
while not done:
# randomly sample a sequence of jobs from workload (self.start_idx_last_reset + 1) % (self.loads.size() - 2 * job_sequence_size
if self.batch_job_slice == 0:
self.start = self.np_random.randint(job_sequence_size, (self.loads.size() - job_sequence_size - 1))
else:
self.start = self.np_random.randint(job_sequence_size, (self.batch_job_slice - job_sequence_size - 1))
if self.sjf_scores[self.start] > 10 and self.sjf_scores[self.start] < 150:
done = True
else:
if self.batch_job_slice == 0:
self.start = self.np_random.randint(job_sequence_size, (self.loads.size() - job_sequence_size - 1))
else:
self.start = self.np_random.randint(job_sequence_size, (self.batch_job_slice - job_sequence_size - 1))
self.start_idx_last_reset = self.start
self.num_job_in_batch = job_sequence_size
self.last_job_in_batch = self.start + self.num_job_in_batch
self.current_timestamp = self.loads[self.start].submit_time
self.job_queue.append(self.loads[self.start])
self.next_arriving_job_idx = self.start + 1
if self.enable_preworkloads:
self.gen_preworkloads(job_sequence_size + self.np_random.randint(job_sequence_size))
self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.sjf_score).values()))
self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.f1_score).values()))
# self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.smallest_score).values()))
# self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.fcfs_score).values()))
#self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.f2_score).values()))
#self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.f3_score).values()))
#self.scheduled_scores.append(sum(self.schedule_curr_sequence_reset(self.f4_score).values()))
return self.build_observation(), self.build_critic_observation()
#print(np.mean(self.scheduled_scores))
'''
if (np.mean(self.scheduled_scores) > 5):
return self.build_observation()
else:
return self.reset()
'''
def reset_for_test(self, num,start):
self.cluster.reset()
self.loads.reset()
self.job_queue = []
self.running_jobs = []
self.visible_jobs = []
self.pairs = []
self.current_timestamp = 0
self.start = 0
self.next_arriving_job_idx = 0
self.last_job_in_batch = 0
self.num_job_in_batch = 0
self.scheduled_rl = {}
self.penalty = 0
self.pivot_job = False
self.scheduled_scores = []
job_sequence_size = num
assert self.batch_job_slice == 0 or self.batch_job_slice>=job_sequence_size
if self.batch_job_slice == 0:
self.start = self.np_random.randint(job_sequence_size, (self.loads.size() - job_sequence_size - 1))
else:
self.start = self.np_random.randint(job_sequence_size, (self.batch_job_slice - job_sequence_size - 1))
#self.start = start
self.start_idx_last_reset = self.start
self.num_job_in_batch = job_sequence_size
self.last_job_in_batch = self.start + self.num_job_in_batch
self.current_timestamp = self.loads[self.start].submit_time
self.job_queue.append(self.loads[self.start])
self.next_arriving_job_idx = self.start + 1
def skip_for_resources_greedy(self, job, scheduled_logs):
#note that this function is only called when current job can not be scheduled.
assert not self.cluster.can_allocated(job)
while not self.cluster.can_allocated(job):
# schedule nothing, just move forward to next timestamp. It should just add a new job or finish a running job
assert self.running_jobs
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.next_arriving_job_idx < self.last_job_in_batch and self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job.
#@profile
def moveforward_for_resources_backfill_greedy(self, job, scheduled_logs):
#note that this function is only called when current job can not be scheduled.
assert not self.cluster.can_allocated(job)
earliest_start_time = self.current_timestamp
# sort all running jobs by estimated finish time
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.request_time))
free_processors = self.cluster.free_node * self.cluster.num_procs_per_node
for running_job in self.running_jobs:
free_processors += len(running_job.allocated_machines) * self.cluster.num_procs_per_node
earliest_start_time = (running_job.scheduled_time + running_job.request_time)
if free_processors >= job.request_number_of_processors:
break
while not self.cluster.can_allocated(job):
# try to backfill as many jobs as possible. Use FCFS
self.job_queue.sort(key=lambda _j: self.fcfs_score(_j))
job_queue_iter_copy = list(self.job_queue)
for _j in job_queue_iter_copy:
if (self.current_timestamp + _j.request_time) < earliest_start_time:
if self.cluster.can_allocated(_j):
# we should be OK to schedule the job now
assert _j.scheduled_time == -1 # this job should never be scheduled before.
_j.scheduled_time = self.current_timestamp
_j.allocated_machines = self.cluster.allocate(_j.job_id, _j.request_number_of_processors)
self.running_jobs.append(_j)
score = self.job_score(_j) # calculated reward
scheduled_logs[_j.job_id] = score
self.job_queue.remove(_j) # remove the job from job queue
# move to the next timestamp
assert self.running_jobs
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.next_arriving_job_idx < self.last_job_in_batch \
and self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job
def post_process_score(self, scheduled_logs):
if self.job_score_type == 0:
# bsld
for i in scheduled_logs:
scheduled_logs[i] /= self.num_job_in_batch
elif self.job_score_type == 1:
# wait time
for i in scheduled_logs:
scheduled_logs[i] /= self.num_job_in_batch
elif self.job_score_type == 2:
# turnaround time
for i in scheduled_logs:
scheduled_logs[i] /= self.num_job_in_batch
elif self.job_score_type == 3:
total_cpu_hour = (self.current_timestamp - self.loads[self.start].submit_time)*self.loads.max_procs
for i in scheduled_logs:
scheduled_logs[i] /= total_cpu_hour
elif self.job_score_type == 4:
for i in scheduled_logs:
scheduled_logs[i] /= self.num_job_in_batch
else:
raise NotImplementedError
#@profile
def schedule_curr_sequence_reset(self, score_fn):
# schedule the sequence of jobs using heuristic algorithm.
scheduled_logs = {}
# f = False
# if score_fn.__name__ == "sjf_score":
# f = True
# num_total = 0
# start_time = time.time()
while True:
self.job_queue.sort(key=lambda j: score_fn(j))
job_for_scheduling = self.job_queue[0]
# if f:
# num_total += 1
# if selected job needs more resources, skip scheduling and try again after adding new jobs or releasing some resources
if not self.cluster.can_allocated(job_for_scheduling):
if self.backfil:
self.moveforward_for_resources_backfill_greedy(job_for_scheduling, scheduled_logs)
else:
self.skip_for_resources_greedy(job_for_scheduling, scheduled_logs)
assert job_for_scheduling.scheduled_time == -1 # this job should never be scheduled before.
job_for_scheduling.scheduled_time = self.current_timestamp
job_for_scheduling.allocated_machines = self.cluster.allocate(job_for_scheduling.job_id,
job_for_scheduling.request_number_of_processors)
self.running_jobs.append(job_for_scheduling)
score = self.job_score(job_for_scheduling) # calculated reward
scheduled_logs[job_for_scheduling.job_id] = score
self.job_queue.remove(job_for_scheduling)
not_empty = self.moveforward_for_job()
if not not_empty:
break
self.post_process_score(scheduled_logs)
# if f:
# print((time.time()-start_time)/num_total, num_total)
# reset again
self.cluster.reset()
self.loads.reset()
self.job_queue = []
self.running_jobs = []
self.visible_jobs = []
self.pairs = []
self.current_timestamp = self.loads[self.start].submit_time
self.job_queue.append(self.loads[self.start])
self.last_job_in_batch = self.start + self.num_job_in_batch
self.next_arriving_job_idx = self.start + 1
if self.enable_preworkloads:
self.refill_preworkloads()
return scheduled_logs
def build_critic_observation(self):
vector = np.zeros(JOB_SEQUENCE_SIZE * 3,dtype=float)
earlist_job = self.loads[self.start_idx_last_reset]
earlist_submit_time = earlist_job.submit_time
pairs = []
for i in range(self.start_idx_last_reset, self.last_job_in_batch+1):
job = self.loads[i]
submit_time = job.submit_time - earlist_submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
normalized_submit_time = min(float(submit_time) / float(MAX_WAIT_TIME), 1.0 - 1e-5)
normalized_run_time = min(float(request_time) / float(self.loads.max_exec_time), 1.0 - 1e-5)
normalized_request_nodes = min(float(request_processors) / float(self.loads.max_procs), 1.0 - 1e-5)
pairs.append([normalized_submit_time, normalized_run_time, normalized_request_nodes])
for i in range(JOB_SEQUENCE_SIZE):
vector[i*3:(i+1)*3] = pairs[i]
return vector
def build_observation(self):
vector = np.zeros((MAX_QUEUE_SIZE) * JOB_FEATURES, dtype=float)
self.job_queue.sort(key=lambda job: self.fcfs_score(job))
self.visible_jobs = []
for i in range(0, MAX_QUEUE_SIZE):
if i < len(self.job_queue):
self.visible_jobs.append(self.job_queue[i])
else:
break
self.visible_jobs.sort(key=lambda j: self.fcfs_score(j))
if self.shuffle:
random.shuffle(self.visible_jobs)
#@ddai: optimize the observable jobs
self.visible_jobs = []
if len(self.job_queue) <= MAX_QUEUE_SIZE:
for i in range(0, len(self.job_queue)):
self.visible_jobs.append(self.job_queue[i])
else:
visible_f1 = []
f1_index = 0
self.job_queue.sort(key=lambda job: self.f1_score(job))
for i in range(0, MAX_QUEUE_SIZE):
visible_f1.append(self.job_queue[i])
visible_f2 = []
f2_index = 0
self.job_queue.sort(key=lambda job: self.f2_score(job))
for i in range(0, MAX_QUEUE_SIZE):
visible_f2.append(self.job_queue[i])
visible_sjf = []
sjf_index = 0
self.job_queue.sort(key=lambda job: self.sjf_score(job))
for i in range(0, MAX_QUEUE_SIZE):
visible_sjf.append(self.job_queue[i])
visible_small = []
small_index = 0
self.job_queue.sort(key=lambda job: self.smallest_score(job))
for i in range(0, MAX_QUEUE_SIZE):
visible_small.append(self.job_queue[i])
visible_random = []
random_index = 0
shuffled = list(self.job_queue)
shuffle(shuffled)
for i in range(0, MAX_QUEUE_SIZE):
visible_random.append(shuffled[i])
index = 0
while index < MAX_QUEUE_SIZE:
f1_job = visible_f1[f1_index]
f1_index += 1
f2_job = visible_f2[f2_index]
f2_index += 1
sjf_job = visible_sjf[sjf_index]
sjf_index += 1
small_job = visible_small[small_index]
small_index += 1
random_job = visible_sjf[random_index]
random_index += 1
#if (not f1_job in self.visible_jobs) and index < MAX_QUEUE_SIZE:
# self.visible_jobs.append(f1_job)
# index += 1
#if (not f2_job in self.visible_jobs) and index < MAX_QUEUE_SIZE:
# self.visible_jobs.append(f2_job)
# index += 1
if (not sjf_job in self.visible_jobs) and index < MAX_QUEUE_SIZE:
self.visible_jobs.append(sjf_job)
index += 1
if (not small_job in self.visible_jobs) and index < MAX_QUEUE_SIZE:
self.visible_jobs.append(small_job)
index += 1
if (not random_job in self.visible_jobs) and index < MAX_QUEUE_SIZE:
self.visible_jobs.append(random_job)
index += 1
'''
@ddai: OPTIMIZE_OBSV. This time, we calculate the earliest start time of each job and expose that to the RL agent.
if it is 0, then the job can start now, if it is near 1, that means it will have to wait for a really long time to start.
The earliest start time is calculated based on current resources and the running jobs. It assumes no more jobs will be scheduled.
# calculate the free resources at each outstanding ts
free_processors_pair = []
free_processors = (self.cluster.free_node * self.cluster.num_procs_per_node)
free_processors_pair.append((free_processors, 0))
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
for rj in self.running_jobs:
free_processors += rj.request_number_of_processors
free_processors_pair.append((free_processors, (rj.scheduled_time + rj.run_time - self.current_timestamp)))
'''
self.pairs = []
add_skip = False
for i in range(0, MAX_QUEUE_SIZE):
if i < len(self.visible_jobs) and i < (MAX_QUEUE_SIZE ):
job = self.visible_jobs[i]
submit_time = job.submit_time
request_processors = job.request_number_of_processors
request_time = job.request_time
# run_time = job.run_time
wait_time = self.current_timestamp - submit_time
# make sure that larger value is better.
normalized_wait_time = min(float(wait_time) / float(MAX_WAIT_TIME), 1.0 - 1e-5)
normalized_run_time = min(float(request_time) / float(self.loads.max_exec_time), 1.0 - 1e-5)
normalized_request_nodes = min(float(request_processors) / float(self.loads.max_procs), 1.0 - 1e-5)
'''
@ddai: part 2 of OPTIMIZE_OBSV
earliest_start_time = 1
for fp, ts in free_processors_pair:
if request_processors < fp:
earliest_start_time = ts
break
normalized_earliest_start_time = min(float(earliest_start_time) / float(MAX_WAIT_TIME), 1.0 - 1e-5)
'''
# add extra parameters, include "Requested Memory", "User Id", "Groupd Id", "Exectuable Id", if its value does not exist in the trace (-1), we set it to 1 by default.
if job.request_memory == -1:
normalized_request_memory = 1
else:
normalized_request_memory = min(float(job.request_memory)/float(self.loads.max_requested_memory), 1.0 - 1e-5)
if job.user_id == -1:
normalized_user_id = 1
else:
normalized_user_id = min(float(job.user_id)/float(self.loads.max_user_id), 1.0-1e-5)
if job.group_id == -1:
normalized_group_id = 1
else:
normalized_group_id = min(float(job.group_id)/float(self.loads.max_group_id), 1.0-1e-5)
if job.executable_number == -1:
normalized_executable_id = 1
else:
normalized_executable_id = min(float(job.executable_number)/float(self.loads.max_executable_number), 1.0-1e-5)
if self.cluster.can_allocated(job):
can_schedule_now = 1.0 - 1e-5
else:
can_schedule_now = 1e-5
self.pairs.append([job,normalized_wait_time, normalized_run_time, normalized_request_nodes, normalized_request_memory, normalized_user_id, normalized_group_id, normalized_executable_id, can_schedule_now])
elif self.skip and not add_skip: # the next job is skip
add_skip = True
if self.pivot_job:
self.pairs.append([None, 1, 1, 1, 1, 1, 1, 1, 1])
else:
self.pairs.append([None, 1, 1, 1, 1, 1, 1, 1, 0])
else:
self.pairs.append([None,0,1,1,1,1,1,1,0])
for i in range(0, MAX_QUEUE_SIZE):
vector[i*JOB_FEATURES:(i+1)*JOB_FEATURES] = self.pairs[i][1:]
return vector
#@profile
def moveforward_for_resources_backfill(self, job):
#note that this function is only called when current job can not be scheduled.
assert not self.cluster.can_allocated(job)
earliest_start_time = self.current_timestamp
# sort all running jobs by estimated finish time
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.request_time))
free_processors = self.cluster.free_node * self.cluster.num_procs_per_node
for running_job in self.running_jobs:
free_processors += len(running_job.allocated_machines) * self.cluster.num_procs_per_node
earliest_start_time = (running_job.scheduled_time + running_job.request_time)
if free_processors >= job.request_number_of_processors:
break
while not self.cluster.can_allocated(job):
# try to backfill as many jobs as possible. Use FCFS
self.job_queue.sort(key=lambda _j: self.fcfs_score(_j))
job_queue_iter_copy = list(self.job_queue)
for _j in job_queue_iter_copy:
if self.cluster.can_allocated(_j) and (self.current_timestamp + _j.request_time) < earliest_start_time:
# we should be OK to schedule the job now
assert _j.scheduled_time == -1 # this job should never be scheduled before.
_j.scheduled_time = self.current_timestamp
_j.allocated_machines = self.cluster.allocate(_j.job_id, _j.request_number_of_processors)
self.running_jobs.append(_j)
score = self.job_score(_j) # calculated reward
self.scheduled_rl[_j.job_id] = score
self.job_queue.remove(_j) # remove the job from job queue
# move to the next timestamp
assert self.running_jobs
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.next_arriving_job_idx < self.last_job_in_batch \
and self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job
def skip_for_resources(self, job):
#note that this function is only called when current job can not be scheduled.
assert not self.cluster.can_allocated(job)
while not self.cluster.can_allocated(job):
# schedule nothing, just move forward to next timestamp. It should just add a new job or finish a running job
assert self.running_jobs
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.next_arriving_job_idx < self.last_job_in_batch and self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job.
#@profile
def moveforward_for_job(self):
if self.job_queue:
return True
# if we need to add job, but can not add any more, return False indicating the job_queue is for sure empty now.
if self.next_arriving_job_idx >= self.last_job_in_batch:
assert not self.job_queue
return False
# move forward to add jobs into job queue.
while not self.job_queue:
if not self.running_jobs: # there are no running jobs
next_resource_release_time = sys.maxsize # always add jobs if no resource can be released.
next_resource_release_machines = []
else:
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
return True # job added
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job.
def job_score(self, job_for_scheduling):
# 0: Average bounded slowdown, 1: Average waiting time
# 2: Average turnaround time, 3: Resource utilization 4: Average slowdown
if self.job_score_type == 0:
# bsld
_tmp = max(1.0, (float(job_for_scheduling.scheduled_time - job_for_scheduling.submit_time + job_for_scheduling.run_time)
/
max(job_for_scheduling.run_time, 10)))
elif self.job_score_type == 1:
#wait time
_tmp = float(job_for_scheduling.scheduled_time - job_for_scheduling.submit_time)
elif self.job_score_type == 2:
# turnaround time
_tmp = float(job_for_scheduling.scheduled_time - job_for_scheduling.submit_time + job_for_scheduling.run_time)
elif self.job_score_type == 3:
# utilization
_tmp = -float(job_for_scheduling.run_time*job_for_scheduling.request_number_of_processors)
elif self.job_score_type == 4:
# sld
_tmp = float(job_for_scheduling.scheduled_time - job_for_scheduling.submit_time + job_for_scheduling.run_time)\
/job_for_scheduling.run_time
else:
raise NotImplementedError
# Weight larger jobs.
#_tmp = _tmp * (job_for_scheduling.run_time * job_for_scheduling.request_number_of_processors)
return _tmp
def has_only_one_job(self):
if len(self.job_queue) == 1:
return True
else:
return False
def skip_schedule(self):
# schedule nothing, just move forward to next timestamp. It should 1) add a new job; 2) finish a running job; 3) reach skip time
next_time_after_skip = self.current_timestamp + SKIP_TIME
next_resource_release_time = sys.maxsize # always add jobs if no resource can be released.
next_resource_release_machines = []
if self.running_jobs: # there are running jobs
self.running_jobs.sort(key=lambda running_job: (running_job.scheduled_time + running_job.run_time))
next_resource_release_time = (self.running_jobs[0].scheduled_time + self.running_jobs[0].run_time)
next_resource_release_machines = self.running_jobs[0].allocated_machines
if self.next_arriving_job_idx >= self.last_job_in_batch and not self.running_jobs:
if not self.pivot_job:
self.pivot_job = True
return False, 0
else:
return False, 0
if next_time_after_skip < min(self.loads[self.next_arriving_job_idx].submit_time, next_resource_release_time):
self.current_timestamp = next_time_after_skip
return False, 0
if self.next_arriving_job_idx < self.last_job_in_batch and self.loads[self.next_arriving_job_idx].submit_time <= next_resource_release_time:
self.current_timestamp = max(self.current_timestamp, self.loads[self.next_arriving_job_idx].submit_time)
self.job_queue.append(self.loads[self.next_arriving_job_idx])
self.next_arriving_job_idx += 1
else:
self.current_timestamp = max(self.current_timestamp, next_resource_release_time)
self.cluster.release(next_resource_release_machines)
self.running_jobs.pop(0) # remove the first running job.
return False, 0
def schedule(self, job_for_scheduling):
# make sure we move forward and release needed resources
if not self.cluster.can_allocated(job_for_scheduling):
if self.backfil:
self.moveforward_for_resources_backfill(job_for_scheduling)
else:
self.skip_for_resources(job_for_scheduling)
# we should be OK to schedule the job now
assert job_for_scheduling.scheduled_time == -1 # this job should never be scheduled before.
job_for_scheduling.scheduled_time = self.current_timestamp
job_for_scheduling.allocated_machines = self.cluster.allocate(job_for_scheduling.job_id, job_for_scheduling.request_number_of_processors)
self.running_jobs.append(job_for_scheduling)
score = self.job_score(job_for_scheduling) # calculated reward
self.scheduled_rl[job_for_scheduling.job_id] = score
self.job_queue.remove(job_for_scheduling) # remove the job from job queue
# after scheduling, check if job queue is empty, try to add jobs.
not_empty = self.moveforward_for_job()
if not_empty:
# job_queue is not empty
return False
else:
# job_queue is empty and can not add new jobs as we reach the end of the sequence
return True
def valid(self, a):
action = a[0]
return self.pairs[action][0]
#@profile
def step(self, a):
job_for_scheduling = self.pairs[a][0]
if not job_for_scheduling:
done, _ = self.skip_schedule()
else:
job_for_scheduling = self.pairs[a][0]
done = self.schedule(job_for_scheduling)
if not done:
obs = self.build_observation()
return [obs, 0, False, 0, 0, 0]
else:
self.post_process_score(self.scheduled_rl)
rl_total = sum(self.scheduled_rl.values())
best_total = min(self.scheduled_scores)
sjf = self.scheduled_scores[0]
f1 = self.scheduled_scores[1]
rwd2 = (best_total - rl_total)
rwd = -rl_total
'''
if (best_total) < rl_total:
rwd = -1
elif best_total == rl_total:
rwd = 0
else:
rwd = 1
'''
return [None, rwd, True, rwd2, sjf, f1]
def step_for_test(self, a):
job_for_scheduling = self.pairs[a][0]
if not job_for_scheduling:
# print("SKIP", end=" ")
done, _ = self.skip_schedule()
else:
job_for_scheduling = self.pairs[a][0]
done = self.schedule(job_for_scheduling)
if not done:
obs = self.build_observation()
return [obs, 0, False, None]
else:
self.post_process_score(self.scheduled_rl)
rl_total = sum(self.scheduled_rl.values())
return [None, rl_total, True, None]
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--workload', type=str, default='./data/lublin_256.swf') # RICC-2010-2
args = parser.parse_args()
current_dir = os.getcwd()
workload_file = os.path.join(current_dir, args.workload)
env = HPCEnv(batch_job_slice=100, build_sjf=True)
env.seed(0)
env.my_init(workload_file=workload_file, sched_file=workload_file)