-
Notifications
You must be signed in to change notification settings - Fork 0
/
retrain.py
1192 lines (1076 loc) · 62 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# retrain.py
#
# original file by Google:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
"""
Transfer learning with Inception v3 or Mobilenet models.
This example shows how to take a Inception v3 or Mobilenet model trained on ImageNet images,
and train a new top layer that can recognize other classes of images.
The top layer receives as input a 2048-dimensional vector (1001-dimensional for Mobilenet) for each image. We train a
softmax layer on top of this representation. Assuming the softmax layer contains N labels, this corresponds to
learning N + 2048*N (or 1001*N) model parameters corresponding to the learned biases and weights.
You can replace the image_dir argument with any folder containing subfolders of images. The label for each image is
taken from the name of the subfolder it's in.
This produces a new model file that can be loaded and run by any TensorFlow program, for example the label_image sample code.
To use with TensorBoard:
tensorboard --logdir /path/to/tensorboard_logs
"""
from datetime import datetime
import hashlib
import os
import os.path
import random
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
from tensorflow.contrib.quantize.python import quant_ops
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat
# module level variables ##############################################################################################
MIN_NUM_IMAGES_REQUIRED_FOR_TRAINING = 10
MIN_NUM_IMAGES_SUGGESTED_FOR_TRAINING = 100
MIN_NUM_IMAGES_REQUIRED_FOR_TESTING = 3
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
# path to folders of labeled images
TRAINING_IMAGES_DIR = os.getcwd() + '/training_images'
TEST_IMAGES_DIR = os.getcwd() + "/test_images/"
# where to save the trained graph
OUTPUT_GRAPH = os.getcwd() + '/' + 'retrained_graph.pb'
# where to save the intermediate graphs
INTERMEDIATE_OUTPUT_GRAPHS_DIR = os.getcwd() + '/intermediate_graph'
# how many steps to store intermediate graph, if "0" then will not store
INTERMEDIATE_STORE_FREQUENCY = 0
# where to save the trained graph's labels
OUTPUT_LABELS = os.getcwd() + '/' + 'retrained_labels.txt'
# where to save summary logs for TensorBoard
TENSORBOARD_DIR = os.getcwd() + '/' + 'tensorboard_logs'
# how many training steps to run before ending
# NOTE: original Google default is 4000, use 4000 (or possibly higher) for production grade results
HOW_MANY_TRAINING_STEPS=1000
# how large a learning rate to use when training
LEARNING_RATE = 0.01
# what percentage of images to use as a test set
TESTING_PERCENTAGE = 10
# what percentage of images to use as a validation set
VALIDATION_PERCENTAGE = 10
# how often to evaluate the training results
EVAL_STEP_INTERVAL = 10
# how many images to train on at a time
TRAIN_BATCH_SIZE = 100
# How many images to test on. This test set is only used once, to evaluate the final accuracy of the model after
# training completes. A value of -1 causes the entire test set to be used, which leads to more stable results across runs.
TEST_BATCH_SIZE = -1
# How many images to use in an evaluation batch. This validation set is used much more often than the test set, and is an early indicator of how
# accurate the model is during training. A value of -1 causes the entire validation set to be used, which leads to
# more stable results across training iterations, but may be slower on large training sets.
VALIDATION_BATCH_SIZE = 100
# whether to print out a list of all misclassified test images
PRINT_MISCLASSIFIED_TEST_IMAGES = False
# Path to classify_image_graph_def.pb, imagenet_synset_to_human_label_map.txt, and imagenet_2012_challenge_label_map_proto.pbtxt
MODEL_DIR = os.getcwd() + "/" + "model"
# Path to cache bottleneck layer values as files
BOTTLENECK_DIR = os.getcwd() + '/' + 'bottleneck_data'
# the name of the output classification layer in the retrained graph
FINAL_TENSOR_NAME = 'final_result'
# whether to randomly flip half of the training images horizontally
FLIP_LEFT_RIGHT = False
# a percentage determining how much of a margin to randomly crop off the training images
RANDOM_CROP = 0
# a percentage determining how much to randomly scale up the size of the training images by
RANDOM_SCALE = 0
# a percentage determining how much to randomly multiply the training image input pixels up or down by
RANDOM_BRIGHTNESS = 0
# Which model architecture to use. 'inception_v3' is the most accurate, but also the slowest. For faster or smaller models, chose a MobileNet with
# the form 'mobilenet_<parameter size>_<input_size>[_quantized]'. For example, 'mobilenet_1.0_224' will pick a model that is 17 MB in size and takes
# 224 pixel input images, while 'mobilenet_0.25_128_quantized' will choose a much less accurate, but smaller and faster network that's 920 KB
# on disk and takes 128x128 images. See https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html for more information on Mobilenet.
# By default this script will use the high accuracy, but comparatively large and slow Inception v3 model architecture.
# It's recommended that you start with this to validate that you have gathered good training data, but if you want to deploy
# on resource-limited platforms, you can try the `--architecture` flag with a Mobilenet model. For example:
# example command to run floating-point version of mobilenet:
# ARCHITECTURE = 'mobilenet_1.0_224'
# example command to run quantized version of mobilenet:
# ARCHITECTURE = 'mobilenet_1.0_224_quantized'
# There are 32 different Mobilenet models to choose from, with a variety of file size and latency options. The first
# number can be '1.0', '0.75', '0.50', or '0.25' to control the size, and the second controls the input image size,
# either '224', '192', '160', or '128', with smaller sizes running faster.
# See https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html for more information on Mobilenet.
ARCHITECTURE = 'inception_v3'
#######################################################################################################################
def main():
print("starting program . . .")
# make sure the logging output is visible, see https://github.com/tensorflow/tensorflow/issues/3047
tf.logging.set_verbosity(tf.logging.INFO)
if not checkIfNecessaryPathsAndFilesExist():
return
# end if
# prepare necessary directories that can be used during training
prepare_file_system()
# Gather information about the model architecture we'll be using.
model_info = create_model_info(ARCHITECTURE)
if not model_info:
tf.logging.error('Did not recognize architecture flag')
return -1
# end if
# download the model if necessary, then create the model graph
print("downloading model (if necessary) . . .")
downloadModelIfNotAlreadyPresent(model_info['data_url'])
print("creating model graph . . .")
graph, bottleneck_tensor, resized_image_tensor = (create_model_graph(model_info))
# Look at the folder structure, and create lists of all the images.
print("creating image lists . . .")
image_lists = create_image_lists(TRAINING_IMAGES_DIR, TESTING_PERCENTAGE, VALIDATION_PERCENTAGE)
class_count = len(image_lists.keys())
if class_count == 0:
tf.logging.error('No valid folders of images found at ' + TRAINING_IMAGES_DIR)
return -1
# end if
if class_count == 1:
tf.logging.error('Only one valid folder of images found at ' + TRAINING_IMAGES_DIR + ' - multiple classes are needed for classification.')
return -1
# end if
# determinf if any of the distortion command line flags have been set
doDistortImages = False
if (FLIP_LEFT_RIGHT == True or RANDOM_CROP != 0 or RANDOM_SCALE != 0 or RANDOM_BRIGHTNESS != 0):
doDistortImages = True
# end if
print("starting session . . .")
with tf.Session(graph=graph) as sess:
# Set up the image decoding sub-graph.
print("performing jpeg decoding . . .")
jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding( model_info['input_width'],
model_info['input_height'],
model_info['input_depth'],
model_info['input_mean'],
model_info['input_std'])
print("caching bottlenecks . . .")
distorted_jpeg_data_tensor = None
distorted_image_tensor = None
if doDistortImages:
# We will be applying distortions, so setup the operations we'll need.
(distorted_jpeg_data_tensor, distorted_image_tensor) = add_input_distortions(FLIP_LEFT_RIGHT, RANDOM_CROP, RANDOM_SCALE,
RANDOM_BRIGHTNESS, model_info['input_width'],
model_info['input_height'], model_info['input_depth'],
model_info['input_mean'], model_info['input_std'])
else:
# We'll make sure we've calculated the 'bottleneck' image summaries and
# cached them on disk.
cache_bottlenecks(sess, image_lists, TRAINING_IMAGES_DIR, BOTTLENECK_DIR, jpeg_data_tensor, decoded_image_tensor,
resized_image_tensor, bottleneck_tensor, ARCHITECTURE)
# end if
# Add the new layer that we'll be training.
print("adding final training layer . . .")
(train_step, cross_entropy, bottleneck_input, ground_truth_input, final_tensor) = add_final_training_ops(len(image_lists.keys()),
FINAL_TENSOR_NAME,
bottleneck_tensor,
model_info['bottleneck_tensor_size'],
model_info['quantize_layer'])
# Create the operations we need to evaluate the accuracy of our new layer.
print("adding eval ops for final training layer . . .")
evaluation_step, prediction = add_evaluation_step(final_tensor, ground_truth_input)
# Merge all the summaries and write them out to the tensorboard_dir
print("writing TensorBoard info . . .")
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(TENSORBOARD_DIR + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(TENSORBOARD_DIR + '/validation')
# Set up all our weights to their initial default values.
init = tf.global_variables_initializer()
sess.run(init)
# Run the training for as many cycles as requested on the command line.
print("performing training . . .")
for i in range(HOW_MANY_TRAINING_STEPS):
# Get a batch of input bottleneck values, either calculated fresh every
# time with distortions applied, or from the cache stored on disk.
if doDistortImages:
(train_bottlenecks, train_ground_truth) = get_random_distorted_bottlenecks(sess, image_lists, TRAIN_BATCH_SIZE, 'training',
TRAINING_IMAGES_DIR, distorted_jpeg_data_tensor,
distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
else:
(train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks(sess, image_lists, TRAIN_BATCH_SIZE, 'training',
BOTTLENECK_DIR, TRAINING_IMAGES_DIR, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
ARCHITECTURE)
# end if
# Feed the bottlenecks and ground truth into the graph, and run a training
# step. Capture training summaries for TensorBoard with the `merged` op.
train_summary, _ = sess.run([merged, train_step], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
train_writer.add_summary(train_summary, i)
# Every so often, print out how well the graph is training.
is_last_step = (i + 1 == HOW_MANY_TRAINING_STEPS)
if (i % EVAL_STEP_INTERVAL) == 0 or is_last_step:
train_accuracy, cross_entropy_value = sess.run([evaluation_step, cross_entropy], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i, train_accuracy * 100))
tf.logging.info('%s: Step %d: Cross entropy = %f' % (datetime.now(), i, cross_entropy_value))
validation_bottlenecks, validation_ground_truth, _ = (get_random_cached_bottlenecks(sess, image_lists, VALIDATION_BATCH_SIZE, 'validation',
BOTTLENECK_DIR, TRAINING_IMAGES_DIR, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
ARCHITECTURE))
# Run a validation step and capture training summaries for TensorBoard with the `merged` op.
validation_summary, validation_accuracy = sess.run(
[merged, evaluation_step], feed_dict={bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth})
validation_writer.add_summary(validation_summary, i)
tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' % (datetime.now(), i, validation_accuracy * 100, len(validation_bottlenecks)))
# end if
# Store intermediate results
intermediate_frequency = INTERMEDIATE_STORE_FREQUENCY
if (intermediate_frequency > 0 and (i % intermediate_frequency == 0) and i > 0):
intermediate_file_name = (INTERMEDIATE_OUTPUT_GRAPHS_DIR + 'intermediate_' + str(i) + '.pb')
tf.logging.info('Save intermediate result to : ' + intermediate_file_name)
save_graph_to_file(sess, graph, intermediate_file_name)
# end if
# end for
# We've completed all our training, so run a final test evaluation on some new images we haven't used before
print("running testing . . .")
test_bottlenecks, test_ground_truth, test_filenames = (get_random_cached_bottlenecks(sess, image_lists, TEST_BATCH_SIZE, 'testing', BOTTLENECK_DIR,
TRAINING_IMAGES_DIR, jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
bottleneck_tensor, ARCHITECTURE))
test_accuracy, predictions = sess.run([evaluation_step, prediction], feed_dict={bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' % (test_accuracy * 100, len(test_bottlenecks)))
if PRINT_MISCLASSIFIED_TEST_IMAGES:
tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i]:
tf.logging.info('%70s %s' % (test_filename, list(image_lists.keys())[predictions[i]]))
# end if
# end for
# end if
# write out the trained graph and labels with the weights stored as constants
print("writing trained graph and labbels with weights")
save_graph_to_file(sess, graph, OUTPUT_GRAPH)
with gfile.FastGFile(OUTPUT_LABELS, 'w') as f:
f.write('\n'.join(image_lists.keys()) + '\n')
# end with
print("done !!")
# end function
#######################################################################################################################
def checkIfNecessaryPathsAndFilesExist():
# if the training directory does not exist, show and error message and bail
if not os.path.exists(TRAINING_IMAGES_DIR):
print('')
print('ERROR: TRAINING_IMAGES_DIR "' + TRAINING_IMAGES_DIR + '" does not seem to exist')
print('Did you set up the training images?')
print('')
return False
# end if
# nested class
class TrainingSubDir:
# constructor
def __init__(self):
self.loc = ""
self.numImages = 0
# end constructor
# end class
# declare a list of training sub-directories
trainingSubDirs = []
# populate the training sub-directories
for dirName in os.listdir(TRAINING_IMAGES_DIR):
currentTrainingImagesSubDir = os.path.join(TRAINING_IMAGES_DIR, dirName)
if os.path.isdir(currentTrainingImagesSubDir):
trainingSubDir = TrainingSubDir()
trainingSubDir.loc = currentTrainingImagesSubDir
trainingSubDirs.append(trainingSubDir)
# end if
# end for
# if no training sub-directories were found, show an error message and return false
if len(trainingSubDirs) == 0:
print("ERROR: there don't seem to be any training image sub-directories in " + TRAINING_IMAGES_DIR)
print("Did you make a separare image sub-directory for each classification type?")
return False
# end if
# populate the number of training images in each training sub-directory
for trainingSubDir in trainingSubDirs:
# count how many images are in the current training sub-directory
for fileName in os.listdir(trainingSubDir.loc):
if (fileName.endswith(".jpg")) or (fileName.endswith(".png")):
trainingSubDir.numImages += 1
# end if
# end if
# end for
# if any training sub-directory has less than the min required number of training images, show an error message and return false
for trainingSubDir in trainingSubDirs:
if trainingSubDir.numImages < MIN_NUM_IMAGES_REQUIRED_FOR_TRAINING:
print("ERROR: there are less than the required " + str(MIN_NUM_IMAGES_REQUIRED_FOR_TRAINING) + " images in " + trainingSubDir.loc)
print("Did you populate each training sub-directory with images?")
return False
# end if
# end for
# if any training sub-directory has less than the recommended number of training images, show a warning (but don't return false)
for trainingSubDir in trainingSubDirs:
if trainingSubDir.numImages < MIN_NUM_IMAGES_SUGGESTED_FOR_TRAINING:
print("WARNING: there are less than the suggested " + str(MIN_NUM_IMAGES_SUGGESTED_FOR_TRAINING) + " images in " + trainingSubDir.loc)
print("More images should be added to this directory for acceptable training results")
# note we do not return false here b/c this is a warning, not an error
# end if
# end for
# if the test images directory does not exist, show and error message and bail
if not os.path.exists(TEST_IMAGES_DIR):
print('')
print('ERROR: TEST_IMAGES_DIR "' + TEST_IMAGES_DIR + '" does not seem to exist')
print('Did you break out some test images?')
print('')
return False
# end if
# count how many images are in the test images directory
numImagesInTestDir = 0
for fileName in os.listdir(TEST_IMAGES_DIR):
if (fileName.endswith(".jpg") or fileName.endswith(".png")):
numImagesInTestDir += 1
# end if
# end for
# if there are not enough images in the test images directory, show an error and return false
if numImagesInTestDir < MIN_NUM_IMAGES_REQUIRED_FOR_TESTING:
print("ERROR: there are not at least " + str(MIN_NUM_IMAGES_REQUIRED_FOR_TESTING) + " images in " + TEST_IMAGES_DIR)
print("Did you break out some test images?")
return False
# end if
return True
# end function
#######################################################################################################################
def prepare_file_system():
# Setup the directory we'll write summaries to for TensorBoard
if tf.gfile.Exists(TENSORBOARD_DIR):
tf.gfile.DeleteRecursively(TENSORBOARD_DIR)
# end if
tf.gfile.MakeDirs(TENSORBOARD_DIR)
if INTERMEDIATE_STORE_FREQUENCY > 0:
makeDirIfDoesNotExist(INTERMEDIATE_OUTPUT_GRAPHS_DIR)
# end if
return
# end function
#######################################################################################################################
def makeDirIfDoesNotExist(dir_name):
"""
Makes sure the folder exists on disk.
Args:
dir_name: Path string to the folder we want to create.
"""
if not os.path.exists(dir_name):
os.makedirs(dir_name)
# end if
# end function
#######################################################################################################################
def create_model_info(architecture):
"""
Given the name of a model architecture, returns information about it.
There are different base image recognition pretrained models that can be
retrained using transfer learning, and this function translates from the name
of a model to the attributes that are needed to download and train with it.
Args:
architecture: Name of a model architecture.
Returns:
Dictionary of information about the model, or None if the name isn't recognized
Raises:
ValueError: If architecture name is unknown.
"""
architecture = architecture.lower()
is_quantized = False
if architecture == 'inception_v3':
# pylint: disable=line-too-long
data_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
bottleneck_tensor_name = 'pool_3/_reshape:0'
bottleneck_tensor_size = 2048
input_width = 299
input_height = 299
input_depth = 3
resized_input_tensor_name = 'Mul:0'
model_file_name = 'classify_image_graph_def.pb'
input_mean = 128
input_std = 128
elif architecture.startswith('mobilenet_'):
parts = architecture.split('_')
if len(parts) != 3 and len(parts) != 4:
tf.logging.error("Couldn't understand architecture name '%s'", architecture)
return None
# end if
version_string = parts[1]
if (version_string != '1.0' and version_string != '0.75' and version_string != '0.50' and version_string != '0.25'):
tf.logging.error(""""The Mobilenet version should be '1.0', '0.75', '0.50', or '0.25', but found '%s' for architecture '%s'""", version_string, architecture)
return None
# end if
size_string = parts[2]
if (size_string != '224' and size_string != '192' and size_string != '160' and size_string != '128'):
tf.logging.error("""The Mobilenet input size should be '224', '192', '160', or '128', but found '%s' for architecture '%s'""", size_string, architecture)
return None
# end if
if len(parts) == 3:
is_quantized = False
else:
if parts[3] != 'quantized':
tf.logging.error(
"Couldn't understand architecture suffix '%s' for '%s'", parts[3], architecture)
return None
is_quantized = True
# end if
if is_quantized:
data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
data_url += version_string + '_' + size_string + '_quantized_frozen.tgz'
bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
resized_input_tensor_name = 'Placeholder:0'
model_dir_name = ('mobilenet_v1_' + version_string + '_' + size_string + '_quantized_frozen')
model_base_name = 'quantized_frozen_graph.pb'
else:
data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
data_url += version_string + '_' + size_string + '_frozen.tgz'
bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
resized_input_tensor_name = 'input:0'
model_dir_name = 'mobilenet_v1_' + version_string + '_' + size_string
model_base_name = 'frozen_graph.pb'
# end if
bottleneck_tensor_size = 1001
input_width = int(size_string)
input_height = int(size_string)
input_depth = 3
model_file_name = os.path.join(model_dir_name, model_base_name)
input_mean = 127.5
input_std = 127.5
else:
tf.logging.error("Couldn't understand architecture name '%s'", architecture)
raise ValueError('Unknown architecture', architecture)
# end if
return {'data_url': data_url, 'bottleneck_tensor_name': bottleneck_tensor_name, 'bottleneck_tensor_size': bottleneck_tensor_size,
'input_width': input_width, 'input_height': input_height, 'input_depth': input_depth, 'resized_input_tensor_name': resized_input_tensor_name,
'model_file_name': model_file_name, 'input_mean': input_mean, 'input_std': input_std, 'quantize_layer': is_quantized, }
# end function
#######################################################################################################################
def downloadModelIfNotAlreadyPresent(data_url):
"""
Download and extract model tar file.
If the pretrained model we're using doesn't already exist, this function downloads it from the TensorFlow.org website and unpacks it into a directory.
Args:
data_url: Web location of the tar file containing the pretrained model.
"""
dest_directory = MODEL_DIR
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
# end if
filename = data_url.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
# nested function
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
# end def
filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)
print()
statinfo = os.stat(filepath)
tf.logging.info('Successfully downloaded ' + str(filename) + ', statinfo.st_size = ' + str(statinfo.st_size) + ' bytes')
print('Extracting file from ', filepath)
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
else:
print('Not extracting or downloading files, model already present in disk')
# end if
# end function
#######################################################################################################################
def create_model_graph(model_info):
""""
Creates a graph from saved GraphDef file and returns a Graph object.
Args:
model_info: Dictionary containing information about the model architecture.
Returns:
Graph holding the trained Inception network, and various tensors we'll be manipulating.
"""
with tf.Graph().as_default() as graph:
model_path = os.path.join(MODEL_DIR, model_info['model_file_name'])
print('Model path: ', model_path)
with gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(graph_def, name='', return_elements=[model_info['bottleneck_tensor_name'], model_info['resized_input_tensor_name'],]))
# end with
# end with
return graph, bottleneck_tensor, resized_input_tensor
# end function
#######################################################################################################################
def create_image_lists(image_dir, testing_percentage, validation_percentage):
"""
Builds a list of training images from the file system.
Analyzes the sub folders in the image directory, splits them into stable
training, testing, and validation sets, and returns a data structure
describing the lists of images for each label and their paths.
Args:
image_dir: String path to a folder containing subfolders of images.
testing_percentage: Integer percentage of the images to reserve for tests.
validation_percentage: Integer percentage of images reserved for validation.
Returns:
A dictionary containing an entry for each label subfolder, with images split
into training, testing, and validation sets within each label.
"""
# if the image directory does not exist, log an error and bail
if not gfile.Exists(image_dir):
tf.logging.error("Image directory '" + image_dir + "' not found.")
return None
# end if
# create an empty dictionary to store the results
result = {}
# get a list of the sub-directories of the image directory
sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
# for each directory in the sub-directories list . . .
is_root_dir = True
for sub_dir in sub_dirs:
# if we're on the 1st (root) directory, mark our boolean for that as false for the next time around and go back to the top of the for loop
if is_root_dir:
is_root_dir = False
continue
# end if
dir_name = os.path.basename(sub_dir)
if dir_name == image_dir:
continue
# end if
# ToDo: This section should be refactored. The right way to do this would be to get a list of the files that are
# ToDo: there then append (extend) those, not to get the name except the extension, then append an extension,
# ToDo: this (current) way is error prone of the original file has an upper case or mixed case extension
extensions = ['jpg', 'jpeg', 'png']
file_list = []
tf.logging.info("Looking for images in '" + dir_name + "'")
for extension in extensions:
file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
# end for
# if the file list is empty at this point, log a warning and bail
if not file_list:
tf.logging.warning('No files found')
continue
# end if
# if the length of the file list is less than 20 or more than the max number, log an applicable warning (do not return, however)
if len(file_list) < 20:
tf.logging.warning('WARNING: Folder has less than 20 images, which may cause issues.')
elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
tf.logging.warning('WARNING: Folder {} has more than {} images. Some images will never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
# end if
label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name)
# We want to ignore anything after '_nohash_' in the file name when deciding which set to put an image in, the data set creator
# has a way of grouping photos that are close variations of each other. For example this is used in the plant disease data set
# to group multiple pictures of the same leaf.
hash_name = re.sub(r'_nohash_.*$', '', file_name)
# This looks a bit magical, but we need to decide whether this file should go into the training, testing, or validation sets,
# and we want to keep existing files in the same set even if more files are subsequently added. To do that, we need a stable
# way of deciding based on just the file name itself, so we do a hash of that and then use that to generate a probability value
# that we use to assign it.
hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
percentage_hash = ((int(hash_name_hashed, 16) % (MAX_NUM_IMAGES_PER_CLASS + 1)) * (100.0 / MAX_NUM_IMAGES_PER_CLASS))
if percentage_hash < validation_percentage:
validation_images.append(base_name)
elif percentage_hash < (testing_percentage + validation_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
# end if
result[label_name] = {'dir': dir_name, 'training': training_images, 'testing': testing_images, 'validation': validation_images,}
return result
# end function
#######################################################################################################################
def add_jpeg_decoding(input_width, input_height, input_depth, input_mean, input_std):
"""
Adds operations that perform JPEG decoding and resizing to the graph..
Args:
input_width: Desired width of the image fed into the recognizer graph.
input_height: Desired width of the image fed into the recognizer graph.
input_depth: Desired channels of the image fed into the recognizer graph.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
Tensors for the node to feed JPEG data into, and the output of the preprocessing steps.
"""
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int)
offset_image = tf.subtract(resized_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
return jpeg_data, mul_image
# end function
#######################################################################################################################
def add_input_distortions(flip_left_right, random_crop, random_scale, random_brightness, input_width, input_height,
input_depth, input_mean, input_std):
"""
Creates the operations to apply the specified distortions.
During training it can help to improve the results if we run the images
through simple distortions like crops, scales, and flips. These reflect the
kind of variations we expect in the real world, and so can help train the
model to cope with natural data more effectively. Here we take the supplied
parameters and construct a network of operations to apply them to an image.
Cropping
~~~~~~~~
Cropping is done by placing a bounding box at a random position in the full
image. The cropping parameter controls the size of that box relative to the
input image. If it's zero, then the box is the same size as the input and no
cropping is performed. If the value is 50%, then the crop box will be half the
width and height of the input. In a diagram it looks like this:
< width >
+---------------------+
| |
| width - crop% |
| < > |
| +------+ |
| | | |
| | | |
| | | |
| +------+ |
| |
| |
+---------------------+
Scaling
~~~~~~~
Scaling is a lot like cropping, except that the bounding box is always
centered and its size varies randomly within the given range. For example if
the scale percentage is zero, then the bounding box is the same size as the
input and no scaling is applied. If it's 50%, then the bounding box will be in
a random range between half the width and height and full size.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
graph.
input_width: Horizontal size of expected input image to model.
input_height: Vertical size of expected input image to model.
input_depth: How many channels the expected input image should have.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
The jpeg input layer and the distorted result tensor.
"""
jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
margin_scale = 1.0 + (random_crop / 100.0)
resize_scale = 1.0 + (random_scale / 100.0)
margin_scale_value = tf.constant(margin_scale)
resize_scale_value = tf.random_uniform(tensor_shape.scalar(), minval=1.0, maxval=resize_scale)
scale_value = tf.multiply(margin_scale_value, resize_scale_value)
precrop_width = tf.multiply(scale_value, input_width)
precrop_height = tf.multiply(scale_value, input_height)
precrop_shape = tf.stack([precrop_height, precrop_width])
precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
precropped_image = tf.image.resize_bilinear(decoded_image_4d, precrop_shape_as_int)
precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
cropped_image = tf.random_crop(precropped_image_3d, [input_height, input_width, input_depth])
if flip_left_right:
flipped_image = tf.image.random_flip_left_right(cropped_image)
else:
flipped_image = cropped_image
# end if
brightness_min = 1.0 - (random_brightness / 100.0)
brightness_max = 1.0 + (random_brightness / 100.0)
brightness_value = tf.random_uniform(tensor_shape.scalar(), minval=brightness_min, maxval=brightness_max)
brightened_image = tf.multiply(flipped_image, brightness_value)
offset_image = tf.subtract(brightened_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
distort_result = tf.expand_dims(mul_image, 0, name='DistortResult')
return jpeg_data, distort_result
# end function
#######################################################################################################################
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture):
"""
Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no distortions applied during training) it
can speed things up a lot if we calculate the bottleneck layer values once for each image during preprocessing,
and then just read those cached values repeatedly during training. Here we go through all the images we've found,
calculate those values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
image_dir: Root folder string of the subfolders containing the training images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The penultimate output layer of the graph.
architecture: The name of the model architecture.
Returns:
Nothing.
"""
how_many_bottlenecks = 0
makeDirIfDoesNotExist(bottleneck_dir)
for label_name, label_lists in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for index, unused_base_name in enumerate(category_list):
get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir,
jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, architecture)
# end for
how_many_bottlenecks += 1
if how_many_bottlenecks % 100 == 0:
tf.logging.info(str(how_many_bottlenecks) + ' bottleneck files created.')
# end if
# end function
#######################################################################################################################
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor, bottleneck_tensor, architecture):
"""
Retrieves or calculates bottleneck values for an image.
If a cached version of the bottleneck data exists on-disk, return that, otherwise calculate the data and save it to disk for future use.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be modulo-ed by the available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training images.
category: Name string of which set to pull images from - training, testing, or validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The output tensor for the bottleneck values.
architecture: The name of the model architecture.
Returns:
Numpy array of values produced by the bottleneck layer for the image.
"""
label_lists = image_lists[label_name]
sub_dir = label_lists['dir']
sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
makeDirIfDoesNotExist(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, architecture)
if not os.path.exists(bottleneck_path):
create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor, bottleneck_tensor)
# end if
# read in the contents of the bottleneck file as one big string
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneckBigString = bottleneck_file.read()
# end with
bottleneckValues = []
errorOccurred = False
try:
# split the bottleneck file contents read in as one big string into individual float values
bottleneckValues = [float(individualString) for individualString in bottleneckBigString.split(',')]
except ValueError:
tf.logging.warning('Invalid float found, recreating bottleneck')
errorOccurred = True
# end try
if errorOccurred:
# if an error occurred above, create (or re-create) the bottleneck file
create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess,
jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor)
# read in the contents of the newly created bottleneck file
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneckBigString = bottleneck_file.read()
# end with
# split the bottleneck file contents read in as one big string into individual float values again
bottleneckValues = [float(individualString) for individualString in bottleneckBigString.split(',')]
# end if
return bottleneckValues
# end function
#######################################################################################################################
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category, architecture):
""""
Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
architecture: The name of the model architecture.
Returns:
File system path string to an image that meets the requested parameters.
"""
return get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '_' + architecture + '.txt'
# end function
#######################################################################################################################
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Create a single bottleneck file."""
tf.logging.info('Creating bottleneck at ' + bottleneck_path)
image_path = get_image_path(image_lists, label_name, index, image_dir, category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
# end if
image_data = gfile.FastGFile(image_path, 'rb').read()
try:
bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor)
except Exception as e:
raise RuntimeError('Error during processing file %s (%s)' % (image_path, str(e)))
# end try
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
# end with
# end function
#######################################################################################################################
def run_bottleneck_on_image(sess, image_data, image_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor):
"""
Runs inference on an image to extract the 'bottleneck' summary layer.
Args:
sess: Current active TensorFlow Session.
image_data: String of raw JPEG data.
image_data_tensor: Input data layer in the graph.
decoded_image_tensor: Output of initial image resizing and preprocessing.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: Layer before the final softmax.
Returns:
Numpy array of bottleneck values.
"""
# First decode the JPEG image, resize it, and rescale the pixel values.
resized_input_values = sess.run(decoded_image_tensor, {image_data_tensor: image_data})
# Then run it through the recognition network.
bottleneck_values = sess.run(bottleneck_tensor, {resized_input_tensor: resized_input_values})
bottleneck_values = np.squeeze(bottleneck_values)
return bottleneck_values
# end function
#######################################################################################################################
def get_image_path(image_lists, label_name, index, image_dir, category):
""""
Returns a path to an image for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Int offset of the image we want. This will be moduloed by the available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training images.
category: Name string of set to pull images from - training, testing, or validation.
Returns:
File system path string to an image that meets the requested parameters.
"""
if label_name not in image_lists:
tf.logging.fatal('Label does not exist %s.', label_name)
# end if
label_lists = image_lists[label_name]
if category not in label_lists:
tf.logging.fatal('Category does not exist %s.', category)
# end if
category_list = label_lists[category]
if not category_list:
tf.logging.fatal('Label %s has no images in the category %s.', label_name, category)
# end if
mod_index = index % len(category_list)
base_name = category_list[mod_index]
sub_dir = label_lists['dir']
full_path = os.path.join(image_dir, sub_dir, base_name)
return full_path
# end function
#######################################################################################################################
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor, bottleneck_tensor_size, quantize_layer):
"""
Adds a new softmax and fully-connected layer for training.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
bottleneck_tensor_size: How many entries in the bottleneck vector.
quantize_layer: Boolean, specifying whether the newly added layer should be quantized.
Returns:
The tensors for the training and cross entropy results, and tensors for the bottleneck input and ground truth input.
"""
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(bottleneck_tensor, shape=[None, bottleneck_tensor_size], name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(tf.int64, [None], name='GroundTruthInput')
# end with
# Organizing the following ops as `final_training_ops` so they're easier to see in TensorBoard
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
quantized_layer_weights = None
quantized_layer_biases = None
with tf.name_scope('weights'):
initial_value = tf.truncated_normal([bottleneck_tensor_size, class_count], stddev=0.001)
layer_weights = tf.Variable(initial_value, name='final_weights')
if quantize_layer:
quantized_layer_weights = quant_ops.MovingAvgQuantize(layer_weights, is_training=True)
attachTensorBoardSummaries(quantized_layer_weights)
# end if
# this comment is necessary to suppress an unnecessary PyCharm warning