-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
336 lines (274 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import math
import os
import random
import time
from pathlib import Path
from pprint import pprint
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from torchvision.models.resnet import resnet34
from aum import AUMCalculator, DatasetWithIndex
class AverageMeter(object):
"""
Computes and stores the average and current value
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def set_seed(seed: int):
"""
Sets random, numpy, torch, and torch.cuda seeds
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def train_step(args, summary_writer, metrics, aum_calculator, log_interval, batch_step, num_batches,
batch, epoch, num_epochs, global_step, model, optimizer, device):
start = time.time()
model.train()
with torch.enable_grad():
optimizer.zero_grad()
input, target, sample_ids = batch
input = input.to(device)
target = target.to(device)
# Compute output
output = model(input)
loss = F.cross_entropy(output, target)
# Compute gradient and optimize
loss.backward()
optimizer.step()
# Measure accuracy & record loss
end = time.time()
batch_size = target.size(0)
_, pred = output.data.cpu().topk(1, dim=1)
error = torch.ne(pred.squeeze(), target.cpu()).float().sum().item() / batch_size
metrics['error'].update(error, batch_size)
metrics['loss'].update(loss.item(), batch_size)
metrics['batch_time'].update(end - start)
# Update AUM
aum_calculator.update(output, target, sample_ids.tolist())
# log to tensorboard
summary_writer.add_scalar('train/error', metrics['error'].val, global_step)
summary_writer.add_scalar('train/loss', metrics['loss'].val, global_step)
summary_writer.add_scalar('train/batch_time', metrics['batch_time'].val, global_step)
# log to console
if (batch_step + 1) % log_interval == 0:
results = '\t'.join([
'TRAIN',
f'Epoch: [{epoch}/{num_epochs}]',
f'Batch: [{batch_step}/{num_batches}]',
f'Time: {metrics["batch_time"].val:.3f} ({metrics["batch_time"].avg:.3f})',
f'Loss: {metrics["loss"].val:.3f} ({metrics["loss"].avg:.3f})',
f'Error: {metrics["error"].val:.3f} ({metrics["error"].avg:.3f})',
])
print(results)
def eval_step(args, regime, metrics, log_interval, batch_step, num_batches, batch, epoch,
num_epochs, model, device):
start = time.time()
model.eval()
with torch.no_grad():
input, target, sample_ids = batch
input = input.to(device)
target = target.to(device)
# Compute output
output = model(input)
loss = F.cross_entropy(output, target)
# Measure accuracy & record loss
end = time.time()
batch_size = target.size(0)
_, pred = output.data.cpu().topk(1, dim=1)
error = torch.ne(pred.squeeze(), target.cpu()).float().sum().item() / batch_size
metrics['error'].update(error, batch_size)
metrics['loss'].update(loss.item(), batch_size)
metrics['batch_time'].update(end - start)
# log to console
if (batch_step + 1) % log_interval == 0:
results = '\t'.join([
regime,
f'Epoch: [{epoch}/{num_epochs}]',
f'Batch: [{batch_step}/{num_batches}]',
f'Time: {metrics["batch_time"].val:.3f} ({metrics["batch_time"].avg:.3f})',
f'Loss: {metrics["loss"].val:.3f} ({metrics["loss"].avg:.3f})',
f'Error: {metrics["error"].val:.3f} ({metrics["error"].avg:.3f})',
])
print(results)
def parse_args():
parser = argparse.ArgumentParser()
# Dataset
parser.add_argument('--data-dir', type=str, default='./', help='where to download dataset')
parser.add_argument('--valid-size',
type=int,
default=5000,
help='num samples in validation set')
# Output/logging file
parser.add_argument('--log-interval',
type=int,
default=10,
help='how many steps between logging to the console')
parser.add_argument('--output-dir',
type=str,
default='./output',
help='where to save out the model, must be an existing directory.')
parser.add_argument('--detailed-aum',
action='store_true',
help='if set, the AUM calculations will be done in non-compressed mode')
# Optimizer params
parser.add_argument('--learning-rate', type=float, default=0.1, help='optimizer learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for optimizer')
# Training Regime params
parser.add_argument('--num-epochs',
type=int,
default=150,
help='number of epochs to train over')
parser.add_argument('--train-batch-size', type=int, default=64, help='size of training batch')
# Validation Regime params
parser.add_argument('--val-batch-size', type=int, default=64, help='size of val batch')
args = parser.parse_args()
return args
def main(args):
pprint(vars(args))
# Setup experiment folder structure
# Create output folder if it doesn't exist
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# save out args
with open(os.path.join(args.output_dir, 'args.txt'), 'w+') as f:
pprint(vars(args), f)
# Setup summary writer
summary_writer = SummaryWriter(log_dir=os.path.join(args.output_dir, 'tb_logs'))
# Set seeds
set_seed(42)
# Load dataset
# Data transforms
mean = [0.5071, 0.4867, 0.4408]
stdv = [0.2675, 0.2565, 0.2761]
train_transforms = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=stdv),
])
test_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=stdv),
])
# Datasets
train_set = datasets.CIFAR100(args.data_dir,
train=True,
transform=train_transforms,
download=True)
val_set = datasets.CIFAR100(args.data_dir, train=True, transform=test_transforms)
test_set = datasets.CIFAR100(args.data_dir, train=False, transform=test_transforms)
indices = torch.randperm(len(train_set))
train_indices = indices[:len(indices) - args.valid_size]
valid_indices = indices[len(indices) - args.valid_size:]
train_set = torch.utils.data.Subset(train_set, train_indices)
val_set = torch.utils.data.Subset(val_set, valid_indices)
train_set = DatasetWithIndex(train_set)
val_set = DatasetWithIndex(val_set)
test_set = DatasetWithIndex(test_set)
val_loader = DataLoader(val_set,
batch_size=args.val_batch_size,
shuffle=False,
pin_memory=(torch.cuda.is_available()))
test_loader = DataLoader(test_set,
batch_size=args.val_batch_size,
shuffle=False,
pin_memory=(torch.cuda.is_available()))
# Load Model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = resnet34(num_classes=100)
model = model.to(device)
num_params = sum(x.numel() for x in model.parameters() if x.requires_grad)
print(model)
f'Number of parameters: {num_params}'
# Create optimizer & lr scheduler
parameters = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(parameters,
lr=args.learning_rate,
momentum=args.momentum,
nesterov=True)
milestones = [0.5 * args.num_epochs, 0.75 * args.num_epochs]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
# Keep track of AUM
aum_calculator = AUMCalculator(args.output_dir, compressed=(not args.detailed_aum))
# Keep track of things
global_step = 0
best_error = math.inf
print('Beginning training')
for epoch in range(args.num_epochs):
train_loader = DataLoader(train_set,
batch_size=args.train_batch_size,
shuffle=True,
pin_memory=(torch.cuda.is_available()),
num_workers=0)
train_metrics = {
'loss': AverageMeter(),
'error': AverageMeter(),
'batch_time': AverageMeter()
}
num_batches = len(train_loader)
for batch_step, batch in enumerate(train_loader):
train_step(args, summary_writer, train_metrics, aum_calculator, args.log_interval,
batch_step, num_batches, batch, epoch, args.num_epochs, global_step, model,
optimizer, device)
global_step += 1
scheduler.step()
val_metrics = {
'loss': AverageMeter(),
'error': AverageMeter(),
'batch_time': AverageMeter()
}
num_batches = len(val_loader)
for batch_step, batch in enumerate(val_loader):
eval_step(args, 'VAL', val_metrics, args.log_interval, batch_step, num_batches, batch,
epoch, args.num_epochs, model, device)
# log eval metrics to tensorboard
summary_writer.add_scalar('val/error', val_metrics['error'].avg, global_step)
summary_writer.add_scalar('val/loss', val_metrics['loss'].avg, global_step)
summary_writer.add_scalar('val/batch_time', val_metrics['batch_time'].avg, global_step)
# Save best model
if val_metrics['error'].avg < best_error:
best_error = val_metrics['error'].avg
torch.save(model.state_dict(), os.path.join(args.output_dir, 'best.pt'))
# Finalize aum calculator
aum_calculator.finalize()
# Eval best model on on test set
model.load_state_dict(torch.load(os.path.join(args.output_dir, 'best.pt')))
test_metrics = {'loss': AverageMeter(), 'error': AverageMeter(), 'batch_time': AverageMeter()}
num_batches = len(test_loader)
for batch_step, batch in enumerate(test_loader):
eval_step(args, 'TEST', test_metrics, args.log_interval, batch_step, num_batches, batch, -1,
-1, model, device)
# log eval metrics to tensorboard
summary_writer.add_scalar('test/error', test_metrics['error'].avg, global_step)
summary_writer.add_scalar('test/loss', test_metrics['loss'].avg, global_step)
summary_writer.add_scalar('test/batch_time', test_metrics['batch_time'].avg, global_step)
# log test metrics to console
results = '\t'.join([
'FINAL TEST RESULTS',
f'Loss: {test_metrics["loss"].avg:.3f}',
f'Error: {test_metrics["error"].avg:.3f}',
])
print(results)
"""
A demo to show how to calculate AUM while training a ResNet on CIFAR100.
"""
if __name__ == '__main__':
args = parse_args()
main(args)