-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanaBeam.py
executable file
·332 lines (253 loc) · 10 KB
/
anaBeam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python2
import glob, sys, os, array, math
import numpy as np
import ROOT as rt
#rt.TGaxis.SetMaxDigits(3)
def getSensorMap():
sens_map = {}
fmap = open("//Users/artur/Dropbox/Work/LLR/HGCAL/SK2cms/hexaboard/fromDocDB/Skiroc2CMS_sensor_map_simplified.csv","r")
for line in fmap.readlines():
#print len(line.split(','))
if 'Chan' in line: continue
if len(line.split(',')) != 3: continue
(sens_chan,chip,chip_chan) = line.split(',')
#sens_map[(int(chip),int(chip_chan))] = int(sens_chan)
sens_map[int(sens_chan)] = (int(chip),int(chip_chan))
return sens_map
def getHexMap():
return [104,104,81,92,103,113,121,
58,69,80,91,102,112,120,126,
25,46,57,68,79,90,101,111,119,125,127,
25,35,45,56,67,78,89,100,110,118,124,127,
24,34,44,55,66,77,88,99,109,117,123,
14,23,33,43,54,65,76,87,98,108,116,122,13,22,32,
42,53,64,75,86,97,107,115,6,12,21,31,41,52,63,74,
85,96,106,114,5,11,20,30,40,51,62,73,84,95,105,1,
4,10,19,29,39,50,61,72,83,94,93,1,3,9,18,28,38,49,
60,71,82,93,2,8,17,27,37,48,59,70,7,16,26,36,47,15,15]
########################
def getChansData(tree, chip = 0, chans = [0], timesamp = 3, variabs = []):
#data = { chan: {var:[] for var in variabs }} for chan in chans}
data = { chan: { var:[] for var in variabs } for chan in chans}
for ientry, entry in enumerate(tree):
# skip first event
if tree.event < 1: continue
#if tree.event > 100: break
#if tree.event > 8000: break
if ientry > 1000: break
#if tree.event % 100 == 0: print("Event: %i" % tree.event)
if ientry % 100 == 0: print("Event: %i" % ientry)
#if entry.sum_lg[0] > 400000: continue
# check chip
#if chip != "all":
# if tree.chip != chip: continue
# determine SCA
for sca in range(13):
if tree.timesamp[12*13 + sca] == timesamp: break
#print "HEHEHE", tree.event
#if ientry % 1000 == 0: print(ientry)
for var in variabs:
# TOT/TOA have no sca!
if ("tot" in var) or ("toa" in var): isca = 0
else: isca = sca
chip_offset = 2*4
if chip == "all":
for chan in chans:#[:len(chans)/4]:#range(64):
chip_nb = chan/64 + chip_offset
if ("tot" in var) or ("toa" in var):
val = getattr(tree,var)[chip_nb*64 + (chan)%64 ]
else:
val = getattr(tree,var)[chip_nb*64*13 + isca*64 + (chan)%64 ]
#if val == 0: val = 4096
#elif val == 4: val = 0
#if val > 0:
data[chan][var].append(val)
else:
for chan in chans:
val = getattr(tree,var)[chip *64*13 + isca*64 + (chan) ]
#if val == 0: val = 4096
#elif val == 4: val = 0
data[chan][var].append(val)
# Convert lists to numpy arrays
#for key,arr in data.items(): data[key] = np.array(data[key])
for chan in data:
for var in variabs:
data[chan][var] = np.array(data[chan][var])
return data
def readTree(fname, chip = 0, timesamp = 3, nchans = 64, chan_select = "all"):
# read data
tfile = rt.TFile(fname)
tree = tfile.Get("sk2cms")
#tree = rt.TChain("sk2cms")
#for fname in fnames: tree.Add(fname)
if not tree:
print("No tree found!")
exit(0)
else:
print("Found tree with %i events" %tree.GetEntries())
#variabs = ["charge_lowGain","charge_hiGain"]
variabs = ["lg","hg","toa_rise","tot_fast"]
if chip == "all": nchans *= 4
# create channel list
if chan_select == "all":
chans = range(nchans)
elif chan_select == "even":
chans = range(0,nchans,2)
elif chan_select == "odd":
chans = range(1,nchans,2)
else:
chans = range(nchans)
print("Going to analyze these channels:")
print(chans)
# read in all channels' data
print("Reading chan data")
chans_data = getChansData(tree,chip,chans,timesamp,variabs)
print("...done")
tfile.Close()
return chans_data
def subtractPedestal(chans_data):
chans = chans_data.keys()
variabs = chans_data[chans[0]].keys()
all_chan_data = { chan:{var:[] for var in variabs} for chan in chans}
print("Subtracting pedestals...")
#for chan in chans:
# chan_data = chans_data[chan]
# Pedestal subtraction
#for var,values in chan_data.items():
# calc global pedestal
for var in variabs:
all_val = np.array([chans_data[chan][var] for chan in chans]).T
# per event pedestals
glob_peds = [np.median(event) for event in all_val]
#print glob_peds
values = chans_data[chan][var]
for chan in chans:
#chan_ped = values.mean()
chan_ped = np.median(values)
#chan_ped = np.mean(values)
chan_ped_std = values.std()
#if "hg" in var: print chan, chan_ped, chan_ped_std
if chan_ped_std < -3.0:
print(80*"!")
print chan, chan_ped, chan_ped_std
# put channel to zero
all_chan_data[chan][var] = np.subtract(values,10000)
else:
# subtract pedestal from values
all_chan_data[chan][var] = np.subtract(values,glob_peds)
#all_chan_data[chan][var] = np.subtract(values,chan_ped)
#all_chan_data[chan][var] = np.subtract(values,200)
#all_chan_data[chan][var] = values
#if chan < 2:
# print all_chan_data[chan][var]
print("...done")
return all_chan_data
def plot_rms(all_chan_data, outdir = "./", suffix = ""):#foutname = "rms_avg.txt"):
chans = all_chan_data.keys()#[:3]
variabs = all_chan_data[chans[0]].keys()
nchans = chans[-1]
#rms_data = { chip:{chan:() for chan in chans} for chip in range(4)}
#rms_data = { chip:{} for chip in range(4)}
rms_data = {}
#print chans
foutname = outdir + "avg_rms_summary" + suffix + ".txt"
fout = open(foutname,"w")
#for var in ['hg']:#variabs:
sens_map = getSensorMap()
hexmap = getHexMap()
rt.gROOT.LoadMacro("SingleLayer.C")
for var in variabs:
#print(var)
for chan in chans:
chan_data = all_chan_data[chan][var]
#chan_ped = chan_data.mean()
#chan_ped = np.median(chan_data)
#datas = [data for data in chan_data if data > 0]
datas = chan_data
if len(datas) > 0:
chan_ped = np.mean(datas)
else:
chan_ped = 0#2222
#chan_ped = np.mean([0]+[data for data in chan_data if data > 0])
#chan_ped = sum(chan_data > np.mean(chan_data)+100)
chan_rms = chan_data.std()
chip = chan/64
real_chan = chan/4
rms_data[chan] = (chan_ped,chan_rms)
fout.write(var + "\n")
for sens_chan in sens_map:
(chip,chip_chan) = sens_map[sens_chan]
glob_chan = chip * 64 + chip_chan
fout.write("%.2f %.2f\n" %(rms_data[glob_chan][0], rms_data[glob_chan][1]))
canv = rt.TCanvas("hexa_"+var,"hex",700,600)
#canv.Divide(2,1)
rt.gStyle.SetOptStat(0)
# Plot values in Hexagon
hHex_ped = rt.SingleLayerPlot()
#hHex_ped.SetName("ped_"+var); hHex_ped.SetTitle("Mean (ADC) for " + var + suffix.replace('_',' '))
hHex_ped.SetName("ped_"+var); hHex_ped.SetTitle("ADC " + var + suffix.replace('_',' '))
hHex_rms = rt.SingleLayerPlot()
hHex_rms.SetName("rms_"+var); hHex_rms.SetTitle("Ped RMS (ADC) for " + var + suffix.replace('_',' '))
for hex_cell in range(133):
sens_chan = hexmap[hex_cell]
(chip,chip_chan) = sens_map[sens_chan]
glob_chan = chip * 64 + chip_chan
#print hex_cell, sens_chan, glob_chan
hHex_ped.SetBinContent(hex_cell+1, int(rms_data[glob_chan][0]))
hHex_rms.SetBinContent(hex_cell+1, round(rms_data[glob_chan][1],2))
#canv.cd(1)
hHex_ped.Draw("colz text")
#canv.cd(2)
#hHex_rms.Draw("colz text")
canv.Update()
canv.SaveAs(outdir+ canv.GetName()+suffix+".pdf")
#q = raw_input("wait")
fout.close()
rt.gStyle.SetOptStat(0)
return 1
if __name__ == "__main__":
'''
if '-b' in sys.argv:
sys.argv.remove('-b')
_batchMode = True
'''
if len(sys.argv) > 1:
fname = sys.argv[1]
print '# Input files are', fname
else:
print "No input files given!"
#exit(0)
fname = "sk2cms_tree.root"
print("Using " + fname)
fname = fname.replace(".txt",".root")
#fnames = glob.glob(fname)
run_name = fname.replace('.root','')
#run_dir = run_name + '_plots_nopedsub/'
run_dir = run_name + '_plots/'
if not os.path.exists(run_dir): os.makedirs(run_dir)
print("Output dir: " + run_dir)
#chip = 0
#sca = 6
timesamp = 3
nchans = 64
#chan_select = "all"
chan_select = "even"
outfile = rt.TFile(run_dir + "plots.root","recreate")
#chips = [0,1,2,3]#,"all"]
chips = ["all"]
#chips = [0,1,2,3,"all"]
#for sca in range(1):
for timesamp in range(0,8):
#for timesamp in range(8):
for chip in chips:
print(80*"#")
print("Analyzing: chip %s, TS %i" %(str(chip),timesamp))
raw_all_data = readTree(fname, chip, timesamp, nchans, chan_select)
all_data = subtractPedestal(raw_all_data)
#print all_data
if chip == "all":
#foutname = run_dir + "avg_rms_summary.txt"
suffix = "_timesamp_%s" %timesamp
plot_rms(raw_all_data, run_dir, suffix)
#plot_rms(all_data, run_dir, suffix)
outfile.Close()