-
Notifications
You must be signed in to change notification settings - Fork 41
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
how to compile kernel module to support otg wifi adapter #4
Comments
tarunkapadia93
pushed a commit
to tarunkapadia93/android_kernel_xiaomi_armani
that referenced
this issue
Aug 23, 2015
This moves ARM over to the asm-generic/unaligned.h header. This has the benefit of better code generated especially for ARMv7 on gcc 4.7+ compilers. As Arnd Bergmann, points out: The asm-generic version uses the "struct" version for native-endian unaligned access and the "byteshift" version for the opposite endianess. The current ARM version however uses the "byteshift" implementation for both. Thanks to Nicolas Pitre for the excellent analysis: Test case: int foo (int *x) { return get_unaligned(x); } long long bar (long long *x) { return get_unaligned(x); } With the current ARM version: foo: ldrb r3, [r0, #2] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B] ldrb r1, [r0, #1] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B] ldrb r2, [r0, #0] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)] mov r3, r3, asl #16 @ tmp154, MEM[(const u8 *)x_1(D) + 2B], ldrb r0, [r0, armani-dev#3] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B] orr r3, r3, r1, asl #8 @, tmp155, tmp154, MEM[(const u8 *)x_1(D) + 1B], orr r3, r3, r2 @ tmp157, tmp155, MEM[(const u8 *)x_1(D)] orr r0, r3, r0, asl #24 @,, tmp157, MEM[(const u8 *)x_1(D) + 3B], bx lr @ bar: stmfd sp!, {r4, r5, r6, r7} @, mov r2, #0 @ tmp184, ldrb r5, [r0, #6] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 6B], MEM[(const u8 *)x_1(D) + 6B] ldrb r4, [r0, #5] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 5B], MEM[(const u8 *)x_1(D) + 5B] ldrb ip, [r0, #2] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B] ldrb r1, [r0, armani-dev#4] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 4B], MEM[(const u8 *)x_1(D) + 4B] mov r5, r5, asl #16 @ tmp175, MEM[(const u8 *)x_1(D) + 6B], ldrb r7, [r0, #1] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B] orr r5, r5, r4, asl #8 @, tmp176, tmp175, MEM[(const u8 *)x_1(D) + 5B], ldrb r6, [r0, #7] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 7B], MEM[(const u8 *)x_1(D) + 7B] orr r5, r5, r1 @ tmp178, tmp176, MEM[(const u8 *)x_1(D) + 4B] ldrb r4, [r0, #0] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)] mov ip, ip, asl #16 @ tmp188, MEM[(const u8 *)x_1(D) + 2B], ldrb r1, [r0, armani-dev#3] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B] orr ip, ip, r7, asl #8 @, tmp189, tmp188, MEM[(const u8 *)x_1(D) + 1B], orr r3, r5, r6, asl #24 @,, tmp178, MEM[(const u8 *)x_1(D) + 7B], orr ip, ip, r4 @ tmp191, tmp189, MEM[(const u8 *)x_1(D)] orr ip, ip, r1, asl #24 @, tmp194, tmp191, MEM[(const u8 *)x_1(D) + 3B], mov r1, r3 @, orr r0, r2, ip @ tmp171, tmp184, tmp194 ldmfd sp!, {r4, r5, r6, r7} bx lr In both cases the code is slightly suboptimal. One may wonder why wasting r2 with the constant 0 in the second case for example. And all the mov's could be folded in subsequent orr's, etc. Now with the asm-generic version: foo: ldr r0, [r0, #0] @ unaligned @,* x bx lr @ bar: mov r3, r0 @ x, x ldr r0, [r0, #0] @ unaligned @,* x ldr r1, [r3, armani-dev#4] @ unaligned @, bx lr @ This is way better of course, but only because this was compiled for ARMv7. In this case the compiler knows that the hardware can do unaligned word access. This isn't that obvious for foo(), but if we remove the get_unaligned() from bar as follows: long long bar (long long *x) {return *x; } then the resulting code is: bar: ldmia r0, {r0, r1} @ x,, bx lr @ So this proves that the presumed aligned vs unaligned cases does have influence on the instructions the compiler may use and that the above unaligned code results are not just an accident. Still... this isn't fully conclusive without at least looking at the resulting assembly fron a pre ARMv6 compilation. Let's see with an ARMv5 target: foo: ldrb r3, [r0, #0] @ zero_extendqisi2 @ tmp139,* x ldrb r1, [r0, #1] @ zero_extendqisi2 @ tmp140, ldrb r2, [r0, #2] @ zero_extendqisi2 @ tmp143, ldrb r0, [r0, armani-dev#3] @ zero_extendqisi2 @ tmp146, orr r3, r3, r1, asl #8 @, tmp142, tmp139, tmp140, orr r3, r3, r2, asl #16 @, tmp145, tmp142, tmp143, orr r0, r3, r0, asl #24 @,, tmp145, tmp146, bx lr @ bar: stmfd sp!, {r4, r5, r6, r7} @, ldrb r2, [r0, #0] @ zero_extendqisi2 @ tmp139,* x ldrb r7, [r0, #1] @ zero_extendqisi2 @ tmp140, ldrb r3, [r0, armani-dev#4] @ zero_extendqisi2 @ tmp149, ldrb r6, [r0, #5] @ zero_extendqisi2 @ tmp150, ldrb r5, [r0, #2] @ zero_extendqisi2 @ tmp143, ldrb r4, [r0, #6] @ zero_extendqisi2 @ tmp153, ldrb r1, [r0, #7] @ zero_extendqisi2 @ tmp156, ldrb ip, [r0, armani-dev#3] @ zero_extendqisi2 @ tmp146, orr r2, r2, r7, asl #8 @, tmp142, tmp139, tmp140, orr r3, r3, r6, asl #8 @, tmp152, tmp149, tmp150, orr r2, r2, r5, asl #16 @, tmp145, tmp142, tmp143, orr r3, r3, r4, asl #16 @, tmp155, tmp152, tmp153, orr r0, r2, ip, asl #24 @,, tmp145, tmp146, orr r1, r3, r1, asl #24 @,, tmp155, tmp156, ldmfd sp!, {r4, r5, r6, r7} bx lr Compared to the initial results, this is really nicely optimized and I couldn't do much better if I were to hand code it myself. Signed-off-by: Rob Herring <[email protected]> Reviewed-by: Nicolas Pitre <[email protected]> Tested-by: Thomas Petazzoni <[email protected]> Reviewed-by: Arnd Bergmann <[email protected]> Signed-off-by: Russell King <[email protected]> modified for Mako from kernel.org reference Signed-off-by: faux123 <[email protected]> Signed-off-by: tarun93 <[email protected]> Conflicts: arch/arm/include/asm/unaligned.h Conflicts: arch/arm/include/asm/unaligned.h Signed-off-by: tarun93 <[email protected]>
tarunkapadia93
pushed a commit
to tarunkapadia93/android_kernel_xiaomi_armani
that referenced
this issue
Nov 14, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Nov 21, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Nov 21, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Nov 27, 2015
This moves ARM over to the asm-generic/unaligned.h header. This has the benefit of better code generated especially for ARMv7 on gcc 4.7+ compilers. As Arnd Bergmann, points out: The asm-generic version uses the "struct" version for native-endian unaligned access and the "byteshift" version for the opposite endianess. The current ARM version however uses the "byteshift" implementation for both. Thanks to Nicolas Pitre for the excellent analysis: Test case: int foo (int *x) { return get_unaligned(x); } long long bar (long long *x) { return get_unaligned(x); } With the current ARM version: foo: ldrb r3, [r0, tarunkapadia93#2] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B] ldrb r1, [r0, tarunkapadia93#1] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B] ldrb r2, [r0, #0] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)] mov r3, r3, asl #16 @ tmp154, MEM[(const u8 *)x_1(D) + 2B], ldrb r0, [r0, armani-dev#3] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B] orr r3, r3, r1, asl #8 @, tmp155, tmp154, MEM[(const u8 *)x_1(D) + 1B], orr r3, r3, r2 @ tmp157, tmp155, MEM[(const u8 *)x_1(D)] orr r0, r3, r0, asl #24 @,, tmp157, MEM[(const u8 *)x_1(D) + 3B], bx lr @ bar: stmfd sp!, {r4, r5, r6, r7} @, mov r2, #0 @ tmp184, ldrb r5, [r0, #6] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 6B], MEM[(const u8 *)x_1(D) + 6B] ldrb r4, [r0, #5] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 5B], MEM[(const u8 *)x_1(D) + 5B] ldrb ip, [r0, tarunkapadia93#2] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B] ldrb r1, [r0, armani-dev#4] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 4B], MEM[(const u8 *)x_1(D) + 4B] mov r5, r5, asl #16 @ tmp175, MEM[(const u8 *)x_1(D) + 6B], ldrb r7, [r0, tarunkapadia93#1] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B] orr r5, r5, r4, asl #8 @, tmp176, tmp175, MEM[(const u8 *)x_1(D) + 5B], ldrb r6, [r0, #7] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 7B], MEM[(const u8 *)x_1(D) + 7B] orr r5, r5, r1 @ tmp178, tmp176, MEM[(const u8 *)x_1(D) + 4B] ldrb r4, [r0, #0] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)] mov ip, ip, asl #16 @ tmp188, MEM[(const u8 *)x_1(D) + 2B], ldrb r1, [r0, armani-dev#3] @ zero_extendqisi2 @ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B] orr ip, ip, r7, asl #8 @, tmp189, tmp188, MEM[(const u8 *)x_1(D) + 1B], orr r3, r5, r6, asl #24 @,, tmp178, MEM[(const u8 *)x_1(D) + 7B], orr ip, ip, r4 @ tmp191, tmp189, MEM[(const u8 *)x_1(D)] orr ip, ip, r1, asl #24 @, tmp194, tmp191, MEM[(const u8 *)x_1(D) + 3B], mov r1, r3 @, orr r0, r2, ip @ tmp171, tmp184, tmp194 ldmfd sp!, {r4, r5, r6, r7} bx lr In both cases the code is slightly suboptimal. One may wonder why wasting r2 with the constant 0 in the second case for example. And all the mov's could be folded in subsequent orr's, etc. Now with the asm-generic version: foo: ldr r0, [r0, #0] @ unaligned @,* x bx lr @ bar: mov r3, r0 @ x, x ldr r0, [r0, #0] @ unaligned @,* x ldr r1, [r3, armani-dev#4] @ unaligned @, bx lr @ This is way better of course, but only because this was compiled for ARMv7. In this case the compiler knows that the hardware can do unaligned word access. This isn't that obvious for foo(), but if we remove the get_unaligned() from bar as follows: long long bar (long long *x) {return *x; } then the resulting code is: bar: ldmia r0, {r0, r1} @ x,, bx lr @ So this proves that the presumed aligned vs unaligned cases does have influence on the instructions the compiler may use and that the above unaligned code results are not just an accident. Still... this isn't fully conclusive without at least looking at the resulting assembly fron a pre ARMv6 compilation. Let's see with an ARMv5 target: foo: ldrb r3, [r0, #0] @ zero_extendqisi2 @ tmp139,* x ldrb r1, [r0, tarunkapadia93#1] @ zero_extendqisi2 @ tmp140, ldrb r2, [r0, tarunkapadia93#2] @ zero_extendqisi2 @ tmp143, ldrb r0, [r0, armani-dev#3] @ zero_extendqisi2 @ tmp146, orr r3, r3, r1, asl #8 @, tmp142, tmp139, tmp140, orr r3, r3, r2, asl #16 @, tmp145, tmp142, tmp143, orr r0, r3, r0, asl #24 @,, tmp145, tmp146, bx lr @ bar: stmfd sp!, {r4, r5, r6, r7} @, ldrb r2, [r0, #0] @ zero_extendqisi2 @ tmp139,* x ldrb r7, [r0, tarunkapadia93#1] @ zero_extendqisi2 @ tmp140, ldrb r3, [r0, armani-dev#4] @ zero_extendqisi2 @ tmp149, ldrb r6, [r0, #5] @ zero_extendqisi2 @ tmp150, ldrb r5, [r0, tarunkapadia93#2] @ zero_extendqisi2 @ tmp143, ldrb r4, [r0, #6] @ zero_extendqisi2 @ tmp153, ldrb r1, [r0, #7] @ zero_extendqisi2 @ tmp156, ldrb ip, [r0, armani-dev#3] @ zero_extendqisi2 @ tmp146, orr r2, r2, r7, asl #8 @, tmp142, tmp139, tmp140, orr r3, r3, r6, asl #8 @, tmp152, tmp149, tmp150, orr r2, r2, r5, asl #16 @, tmp145, tmp142, tmp143, orr r3, r3, r4, asl #16 @, tmp155, tmp152, tmp153, orr r0, r2, ip, asl #24 @,, tmp145, tmp146, orr r1, r3, r1, asl #24 @,, tmp155, tmp156, ldmfd sp!, {r4, r5, r6, r7} bx lr Compared to the initial results, this is really nicely optimized and I couldn't do much better if I were to hand code it myself. Signed-off-by: Rob Herring <[email protected]> Reviewed-by: Nicolas Pitre <[email protected]> Tested-by: Thomas Petazzoni <[email protected]> Reviewed-by: Arnd Bergmann <[email protected]> Signed-off-by: Russell King <[email protected]> modified for Mako from kernel.org reference Signed-off-by: faux123 <[email protected]> Signed-off-by: hemantbeast <[email protected]> Conflicts: arch/arm/include/asm/unaligned.h Conflicts: arch/arm/include/asm/unaligned.h Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 15, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 21, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 21, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 22, 2015
commit 504d58745c9ca28d33572e2d8a9990b43e06075d upstream. clockevents_increase_min_delta() calls printk() from under hrtimer_bases.lock. That causes lock inversion on scheduler locks because printk() can call into the scheduler. Lockdep puts it as: ====================================================== [ INFO: possible circular locking dependency detected ] 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 Not tainted ------------------------------------------------------- trinity-main/74 is trying to acquire lock: (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c but task is already holding lock: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (hrtimer_bases.lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197 [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85 [<81080792>] task_clock_event_start+0x3a/0x3f [<810807a4>] task_clock_event_add+0xd/0x14 [<8108259a>] event_sched_in+0xb6/0x17a [<810826a2>] group_sched_in+0x44/0x122 [<81082885>] ctx_sched_in.isra.67+0x105/0x11f [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b [<81082bf6>] __perf_install_in_context+0x8b/0xa3 [<8107eb8e>] remote_function+0x12/0x2a [<8105f5af>] smp_call_function_single+0x2d/0x53 [<8107e17d>] task_function_call+0x30/0x36 [<8107fb82>] perf_install_in_context+0x87/0xbb [<810852c9>] SYSC_perf_event_open+0x5c6/0x701 [<810856f9>] SyS_perf_event_open+0x17/0x19 [<8142f8ee>] syscall_call+0x7/0xb -> armani-dev#4 (&ctx->lock){......}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 -> armani-dev#3 (&rq->lock){-.-.-.}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81040873>] __task_rq_lock+0x33/0x3a [<8104184c>] wake_up_new_task+0x25/0xc2 [<8102474b>] do_fork+0x15c/0x2a0 [<810248a9>] kernel_thread+0x1a/0x1f [<814232a2>] rest_init+0x1a/0x10e [<817af949>] start_kernel+0x303/0x308 [<817af2ab>] i386_start_kernel+0x79/0x7d -> tarunkapadia93#2 (&p->pi_lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<810413dd>] try_to_wake_up+0x1d/0xd6 [<810414cd>] default_wake_function+0xb/0xd [<810461f3>] __wake_up_common+0x39/0x59 [<81046346>] __wake_up+0x29/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> tarunkapadia93#1 (&tty->write_wait){-.....}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<81046332>] __wake_up+0x15/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #0 (&port_lock_key){-.....}: [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105c548>] clockevents_program_event+0xe7/0xf3 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 other info that might help us debug this: Chain exists of: &port_lock_key --> &ctx->lock --> hrtimer_bases.lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(hrtimer_bases.lock); lock(&ctx->lock); lock(hrtimer_bases.lock); lock(&port_lock_key); *** DEADLOCK *** 4 locks held by trinity-main/74: #0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb tarunkapadia93#1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f tarunkapadia93#2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 armani-dev#3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4 stack backtrace: CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003 Call Trace: [<81426f69>] dump_stack+0x16/0x18 [<81425a99>] print_circular_bug+0x18f/0x19c [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104af87>] ? lock_release+0x191/0x223 [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8104416d>] ? __dequeue_entity+0x23/0x27 [<81044505>] ? pick_next_task_fair+0xb1/0x120 [<8142cacc>] __schedule+0x4c6/0x4cb [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108 [<810475b0>] ? trace_hardirqs_off+0xb/0xd [<81056346>] ? rcu_irq_exit+0x64/0x77 Fix the problem by using printk_deferred() which does not call into the scheduler. Reported-by: Fengguang Wu <[email protected]> Signed-off-by: Jan Kara <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 31, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 31, 2015
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Jan 10, 2016
workqueue: change BUG_ON() to WARN_ON() This BUG_ON() can be triggered if you call schedule_work() before calling INIT_WORK(). It is a bug definitely, but it's nicer to just print a stack trace and return. Reported-by: Matt Renzelmann <[email protected]> Signed-off-by: Dan Carpenter <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: Catch more locking problems with flush_work() If a workqueue is flushed with flush_work() lockdep checking can be circumvented. For example: static DEFINE_MUTEX(mutex); static void my_work(struct work_struct *w) { mutex_lock(&mutex); mutex_unlock(&mutex); } static DECLARE_WORK(work, my_work); static int __init start_test_module(void) { schedule_work(&work); return 0; } module_init(start_test_module); static void __exit stop_test_module(void) { mutex_lock(&mutex); flush_work(&work); mutex_unlock(&mutex); } module_exit(stop_test_module); would not always print a warning when flush_work() was called. In this trivial example nothing could go wrong since we are guaranteed module_init() and module_exit() don't run concurrently, but if the work item is schedule asynchronously we could have a scenario where the work item is running just at the time flush_work() is called resulting in a classic ABBA locking problem. Add a lockdep hint by acquiring and releasing the work item lockdep_map in flush_work() so that we always catch this potential deadlock scenario. Signed-off-by: Stephen Boyd <[email protected]> Reviewed-by: Yong Zhang <[email protected]> Signed-off-by: Tejun Heo <[email protected]> lockdep: fix oops in processing workqueue Under memory load, on x86_64, with lockdep enabled, the workqueue's process_one_work() has been seen to oops in __lock_acquire(), barfing on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[]. Because it's permissible to free a work_struct from its callout function, the map used is an onstack copy of the map given in the work_struct: and that copy is made without any locking. Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than "rep movsq" for that structure copy: which might race with a workqueue user's wait_on_work() doing lock_map_acquire() on the source of the copy, putting a pointer into the class_cache[], but only in time for the top half of that pointer to be copied to the destination map. Boom when process_one_work() subsequently does lock_map_acquire() on its onstack copy of the lockdep_map. Fix this, and a similar instance in call_timer_fn(), with a lockdep_copy_map() function which additionally NULLs the class_cache[]. Note: this oops was actually seen on 3.4-next, where flush_work() newly does the racing lock_map_acquire(); but Tejun points out that 3.4 and earlier are already vulnerable to the same through wait_on_work(). * Patch orginally from Peter. Hugh modified it a bit and wrote the description. Signed-off-by: Peter Zijlstra <[email protected]> Reported-by: Hugh Dickins <[email protected]> LKML-Reference: <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: perform cpu down operations from low priority cpu_notifier() Currently, all workqueue cpu hotplug operations run off CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to ensure that workqueue is up and running while bringing up a CPU before other notifiers try to use workqueue on the CPU. Per-cpu workqueues are supposed to remain working and bound to the CPU for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even with workqueue offlining running with higher priority because workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which runs the per-cpu workqueue without concurrency management without explicitly detaching the existing workers. However, if the trustee needs to create new workers, it creates unbound workers which may wander off to other CPUs while CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU down is cancelled, the per-CPU workqueue may end up with workers which aren't bound to the CPU. While reliably reproducible with a convoluted artificial test-case involving scheduling and flushing CPU burning work items from CPU down notifiers, this isn't very likely to happen in the wild, and, even when it happens, the effects are likely to be hidden by the following successful CPU down. Fix it by using different priorities for up and down notifiers - high priority for up operations and low priority for down operations. Workqueue cpu hotplug operations will soon go through further cleanup. Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop CPU_DYING notifier operation Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED. This was necessary because workqueue's CPU_DOWN_PREPARE happened before other DOWN_PREPARE notifiers and workqueue needed to stay associated across the rest of DOWN_PREPARE. After the previous patch, workqueue's DOWN_PREPARE happens after others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and let the trustee set GCWQ_DISASSOCIATED after disabling concurrency management. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: ROGUE workers are UNBOUND workers Currently, WORKER_UNBOUND is used to mark workers for the unbound global_cwq and WORKER_ROGUE is used to mark workers for disassociated per-cpu global_cwqs. Both are used to make the marked worker skip concurrency management and the only place they make any difference is in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling idle timer, which can easily be replaced with trustee state testing. This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops WORKER_ROGUE. This is to prepare for removing trustee and handling disassociated global_cwqs as unbound. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: use mutex for global_cwq manager exclusion POOL_MANAGING_WORKERS is used to ensure that at most one worker takes the manager role at any given time on a given global_cwq. Trustee later hitched on it to assume manager adding blocking wait for the bit. As trustee already needed a custom wait mechanism, waiting for MANAGING_WORKERS was rolled into the same mechanism. Trustee is scheduled to be removed. This patch separates out MANAGING_WORKERS wait into per-pool mutex. Workers use mutex_trylock() to test for manager role and trustee uses mutex_lock() to claim manager roles. gcwq_claim/release_management() helpers are added to grab and release manager roles of all pools on a global_cwq. gcwq_claim_management() always grabs pool manager mutexes in ascending pool index order and uses pool index as lockdep subclass. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: drop @bind from create_worker() Currently, create_worker()'s callers are responsible for deciding whether the newly created worker should be bound to the associated CPU and create_worker() sets WORKER_UNBOUND only for the workers for the unbound global_cwq. Creation during normal operation is always via maybe_create_worker() and @bind is true. For workers created during hotplug, @bind is false. Normal operation path is planned to be used even while the CPU is going through hotplug operations or offline and this static decision won't work. Drop @bind from create_worker() and decide whether to bind by looking at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED while create_worker() is in progress, the flag is now allowed to be changed only while holding all manager_mutexes on the global_cwq. This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's back. CPU_ONLINE no longer clears DISASSOCIATED before flushing trustee, which clears DISASSOCIATED before rebinding remaining workers if asked to release. For cases where trustee isn't around, CPU_ONLINE clears DISASSOCIATED after flushing trustee. Also, now, first_idle has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE while binding it. These convolutions will soon be removed by further simplification of CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: reimplement CPU online rebinding to handle idle workers Currently, if there are left workers when a CPU is being brough back online, the trustee kills all idle workers and scheduled rebind_work so that they re-bind to the CPU after the currently executing work is finished. This works for busy workers because concurrency management doesn't try to wake up them from scheduler callbacks, which require the target task to be on the local run queue. The busy worker bumps concurrency counter appropriately as it clears WORKER_UNBOUND from the rebind work item and it's bound to the CPU before returning to the idle state. To reduce CPU on/offlining overhead (as many embedded systems use it for powersaving) and simplify the code path, workqueue is planned to be modified to retain idle workers across CPU on/offlining. This patch reimplements CPU online rebinding such that it can also handle idle workers. As noted earlier, due to the local wakeup requirement, rebinding idle workers is tricky. All idle workers must be re-bound before scheduler callbacks are enabled. This is achieved by interlocking idle re-binding. Idle workers are requested to re-bind and then hold until all idle re-binding is complete so that no bound worker starts executing work item. Only after all idle workers are re-bound and parked, CPU_ONLINE proceeds to release them and queue rebind work item to busy workers thus guaranteeing scheduler callbacks aren't invoked until all idle workers are ready. worker_rebind_fn() is renamed to busy_worker_rebind_fn() and idle_worker_rebind() for idle workers is added. Rebinding logic is moved to rebind_workers() and now called from CPU_ONLINE after flushing trustee. While at it, add CPU sanity check in worker_thread(). Note that now a worker may become idle or the manager between trustee release and rebinding during CPU_ONLINE. As the previous patch updated create_worker() so that it can be used by regular manager while unbound and this patch implements idle re-binding, this is safe. This prepares for removal of trustee and keeping idle workers across CPU hotplugs. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: don't butcher idle workers on an offline CPU Currently, during CPU offlining, after all pending work items are drained, the trustee butchers all workers. Also, on CPU onlining failure, workqueue_cpu_callback() ensures that the first idle worker is destroyed. Combined, these guarantee that an offline CPU doesn't have any worker for it once all the lingering work items are finished. This guarantee isn't really necessary and makes CPU on/offlining more expensive than needs to be, especially for platforms which use CPU hotplug for powersaving. This patch lets offline CPUs removes idle worker butchering from the trustee and let a CPU which failed onlining keep the created first worker. The first worker is created if the CPU doesn't have any during CPU_DOWN_PREPARE and started right away. If onlining succeeds, the rebind_workers() call in CPU_ONLINE will rebind it like any other workers. If onlining fails, the worker is left alone till the next try. This makes CPU hotplugs cheaper by allowing global_cwqs to keep workers across them and simplifies code. Note that trustee doesn't re-arm idle timer when it's done and thus the disassociated global_cwq will keep all workers until it comes back online. This will be improved by further patches. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: remove CPU offline trustee With the previous changes, a disassociated global_cwq now can run as an unbound one on its own - it can create workers as necessary to drain remaining works after the CPU has been brought down and manage the number of workers using the usual idle timer mechanism making trustee completely redundant except for the actual unbinding operation. This patch removes the trustee and let a disassociated global_cwq manage itself. Unbinding is moved to a work item (for CPU affinity) which is scheduled and flushed from CPU_DONW_PREPARE. This patch moves nr_running clearing outside gcwq and manager locks to simplify the code. As nr_running is unused at the point, this is safe. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: simplify CPU hotplug code With trustee gone, CPU hotplug code can be simplified. * gcwq_claim/release_management() now grab and release gcwq lock too respectively and gained _and_lock and _and_unlock postfixes. * All CPU hotplug logic was implemented in workqueue_cpu_callback() which was called by workqueue_cpu_up/down_callback() for the correct priority. This was because up and down paths shared a lot of logic, which is no longer true. Remove workqueue_cpu_callback() and move all hotplug logic into the two actual callbacks. This patch doesn't make any functional changes. Signed-off-by: Tejun Heo <[email protected]> Acked-by: "Rafael J. Wysocki" <[email protected]> workqueue: fix spurious CPU locality WARN from process_one_work() 25511a4776 "workqueue: reimplement CPU online rebinding to handle idle workers" added CPU locality sanity check in process_one_work(). It triggers if a worker is executing on a different CPU without UNBOUND or REBIND set. This works for all normal workers but rescuers can trigger this spuriously when they're serving the unbound or a disassociated global_cwq - rescuers don't have either flag set and thus its gcwq->cpu can be a different value including %WORK_CPU_UNBOUND. Fix it by additionally testing %GCWQ_DISASSOCIATED. Signed-off-by: Tejun Heo <[email protected]> Reported-by: "Paul E. McKenney" <[email protected]> LKML-Refence: <[email protected]> workqueue: reorder queueing functions so that _on() variants are on top Currently, queue/schedule[_delayed]_work_on() are located below the counterpart without the _on postifx even though the latter is usually implemented using the former. Swap them. This is cleanup and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: make queueing functions return bool All queueing functions return 1 on success, 0 if the work item was already pending. Update them to return bool instead. This signifies better that they don't return 0 / -errno. This is cleanup and doesn't cause any functional difference. While at it, fix comment opening for schedule_work_on(). Signed-off-by: Tejun Heo <[email protected]> workqueue: add missing smp_wmb() in process_one_work() WORK_STRUCT_PENDING is used to claim ownership of a work item and process_one_work() releases it before starting execution. When someone else grabs PENDING, all pre-release updates to the work item should be visible and all updates made by the new owner should happen afterwards. Grabbing PENDING uses test_and_set_bit() and thus has a full barrier; however, clearing doesn't have a matching wmb. Given the preceding spin_unlock and use of clear_bit, I don't believe this can be a problem on an actual machine and there hasn't been any related report but it still is theretically possible for clear_pending to permeate upwards and happen before work->entry update. Add an explicit smp_wmb() before work_clear_pending(). Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: [email protected] workqueue: disable irq while manipulating PENDING Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access to the target work item. They first try to claim the bit and proceed with queueing only after that succeeds and there's a window between PENDING being set and the actual queueing where the task can be interrupted or preempted. There's also a similar window in process_one_work() when clearing PENDING. A work item is dequeued, gcwq->lock is released and then PENDING is cleared and the worker might get interrupted or preempted between releasing gcwq->lock and clearing PENDING. cancel[_delayed]_work_sync() tries to claim or steal PENDING. The function assumes that a work item with PENDING is either queued or in the process of being [de]queued. In the latter case, it busy-loops until either the work item loses PENDING or is queued. If canceling coincides with the above described interrupts or preemptions, the canceling task will busy-loop while the queueing or executing task is preempted. This patch keeps irq disabled across claiming PENDING and actual queueing and moves PENDING clearing in process_one_work() inside gcwq->lock so that busy looping from PENDING && !queued doesn't wait for interrupted/preempted tasks. Note that, in process_one_work(), setting last CPU and clearing PENDING got merged into single operation. This removes possible long busy-loops and will allow using try_to_grab_pending() from bh and irq contexts. v2: __queue_work() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Disable irq instead of preemption. IRQ will be disabled while grabbing gcwq->lock later anyway and this allows using try_to_grab_pending() from bh and irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: set delayed_work->timer function on initialization delayed_work->timer.function is currently initialized during queue_delayed_work_on(). Export delayed_work_timer_fn() and set delayed_work timer function during delayed_work initialization together with other fields. This ensures the timer function is always valid on an initialized delayed_work. This is to help mod_delayed_work() implementation. To detect delayed_work users which diddle with the internal timer, trigger WARN if timer function doesn't match on queue. Signed-off-by: Tejun Heo <[email protected]> workqueue: unify local CPU queueing handling Queueing functions have been using different methods to determine the local CPU. * queue_work() superflously uses get/put_cpu() to acquire and hold the local CPU across queue_work_on(). * delayed_work_timer_fn() uses smp_processor_id(). * queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu which is interpreted as the local CPU. * flush_delayed_work[_sync]() were using raw_smp_processor_id(). * __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the target workqueue is bound one but nobody uses this. This patch converts all functions to uniformly use %WORK_CPU_UNBOUND to indicate local CPU and use the local binding feature of __queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling in __queue_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: fix zero @delay handling of queue_delayed_work_on() If @delay is zero and the dealyed_work is idle, queue_delayed_work() queues it for immediate execution; however, queue_delayed_work_on() lacks this logic and always goes through timer regardless of @delay. This patch moves 0 @delay handling logic from queue_delayed_work() to queue_delayed_work_on() so that both functions behave the same. Signed-off-by: Tejun Heo <[email protected]> workqueue: move try_to_grab_pending() upwards try_to_grab_pending() will be used by to-be-implemented mod_delayed_work[_on](). Move try_to_grab_pending() and related functions above queueing functions. This patch only moves functions around. Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce WORK_OFFQ_FLAG_* Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise, WORK_STRUCT_CWQ is clear and the bits contain the last CPU number - either a real CPU number or one of WORK_CPU_*. Scheduled addition of mod_delayed_work[_on]() requires an additional flag, which is used only while a work item is off queue. There are more than enough bits to represent off-queue CPU number on both 32 and 64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower part of the @work->data high bits while off queue. This patch doesn't define any actual OFFQ flag yet. Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to make room for OFFQ flags. To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON() to check that there are enough bits to accomodate off-queue CPU number is added. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: factor out __queue_delayed_work() from queue_delayed_work_on() This is to prepare for mod_delayed_work[_on]() and doesn't cause any functional difference. Signed-off-by: Tejun Heo <[email protected]> workqueue: reorganize try_to_grab_pending() and __cancel_timer_work() * Use bool @is_dwork instead of @timer and let try_to_grab_pending() use to_delayed_work() to determine the delayed_work address. * Move timer handling from __cancel_work_timer() to try_to_grab_pending(). * Make try_to_grab_pending() use -EAGAIN instead of -1 for busy-looping and drop the ret local variable. * Add proper function comment to try_to_grab_pending(). This makes the code a bit easier to understand and will ease further changes. This patch doesn't make any functional change. v2: Use @is_dwork instead of @timer. Signed-off-by: Tejun Heo <[email protected]> workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <[email protected]> Cc: Fengguang Wu <[email protected]> workqueue: implement mod_delayed_work[_on]() Workqueue was lacking a mechanism to modify the timeout of an already pending delayed_work. delayed_work users have been working around this using several methods - using an explicit timer + work item, messing directly with delayed_work->timer, and canceling before re-queueing, all of which are error-prone and/or ugly. This patch implements mod_delayed_work[_on]() which behaves similarly to mod_timer() - if the delayed_work is idle, it's queued with the given delay; otherwise, its timeout is modified to the new value. Zero @delay guarantees immediate execution. v2: Updated to reflect try_to_grab_pending() changes. Now safe to be called from bh context. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Andrew Morton <[email protected]> Cc: Ingo Molnar <[email protected]> workqueue: fix CPU binding of flush_delayed_work[_sync]() delayed_work encodes the workqueue to use and the last CPU in delayed_work->work.data while it's on timer. The target CPU is implicitly recorded as the CPU the timer is queued on and delayed_work_timer_fn() queues delayed_work->work to the CPU it is running on. Unfortunately, this leaves flush_delayed_work[_sync]() no way to find out which CPU the delayed_work was queued for when they try to re-queue after killing the timer. Currently, it chooses the local CPU flush is running on. This can unexpectedly move a delayed_work queued on a specific CPU to another CPU and lead to subtle errors. There isn't much point in trying to save several bytes in struct delayed_work, which is already close to a hundred bytes on 64bit with all debug options turned off. This patch adds delayed_work->cpu to remember the CPU it's queued for. Note that if the timer is migrated during CPU down, the work item could be queued to the downed global_cwq after this change. As a detached global_cwq behaves like an unbound one, this doesn't change much for the delayed_work. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: add missing wmb() in clear_work_data() Any operation which clears PENDING should be preceded by a wmb to guarantee that the next PENDING owner sees all the changes made before PENDING release. There are only two places where PENDING is cleared - set_work_cpu_and_clear_pending() and clear_work_data(). The caller of the former already does smp_wmb() but the latter doesn't have any. Move the wmb above set_work_cpu_and_clear_pending() into it and add one to clear_work_data(). There hasn't been any report related to this issue, and, given how clear_work_data() is used, it is extremely unlikely to have caused any actual problems on any architecture. Signed-off-by: Tejun Heo <[email protected]> Cc: Oleg Nesterov <[email protected]> workqueue: use enum value to set array size of pools in gcwq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent size of pools, definition of worker_pool in gcwq doesn't use it. Using it makes code robust and prevent future mistakes. So change code to use this enum value. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: correct req_cpu in trace_workqueue_queue_work() When we do tracing workqueue_queue_work(), it records requested cpu. But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND, requested cpu is changed as local cpu. In case of @wq->flag & WQ_UNBOUND, above change is not occured, therefore it is reasonable to correct it. Use temporary local variable for storing requested cpu. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: change value of lcpu in __queue_delayed_work_on() We assign cpu id into work struct's data field in __queue_delayed_work_on(). In current implementation, when work is come in first time, current running cpu id is assigned. If we do __queue_delayed_work_on() with CPU A on CPU B, __queue_work() invoked in delayed_work_timer_fn() go into the following sub-optimal path in case of WQ_NON_REENTRANT. gcwq = get_gcwq(cpu); if (wq->flags & WQ_NON_REENTRANT && (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND. It is sufficient to prevent to go into sub-optimal path. tj: Slightly rephrased the comment. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: introduce system_highpri_wq Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker or highpri worker. But, we don't consider this difference in rebind_workers(), we use just system_wq for highpri worker. It makes mismatch between cwq->pool and worker->pool. It doesn't make error in current implementation, but possible in the future. Now, we introduce system_highpri_wq to use proper cwq for highpri workers in rebind_workers(). Following patch fix this issue properly. tj: Even apart from rebinding, having system_highpri_wq generally makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for highpri workers in rebind_workers() In rebind_workers(), we do inserting a work to rebind to cpu for busy workers. Currently, in this case, we use only system_wq. This makes a possible error situation as there is mismatch between cwq->pool and worker->pool. To prevent this, we should use system_highpri_wq for highpri worker to match theses. This implements it. tj: Rephrased comment a bit. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use system_highpri_wq for unbind_work To speed cpu down processing up, use system_highpri_wq. As scheduling priority of workers on it is higher than system_wq and it is not contended by other normal works on this cpu, work on it is processed faster than system_wq. tj: CPU up/downs care quite a bit about latency these days. This shouldn't hurt anything and makes sense. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix checkpatch issues Fixed some checkpatch warnings. tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit. Signed-off-by: Valentin Ilie <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <[email protected]> workqueue: make all workqueues non-reentrant By default, each per-cpu part of a bound workqueue operates separately and a work item may be executing concurrently on different CPUs. The behavior avoids some cross-cpu traffic but leads to subtle weirdities and not-so-subtle contortions in the API. * There's no sane usefulness in allowing a single work item to be executed concurrently on multiple CPUs. People just get the behavior unintentionally and get surprised after learning about it. Most either explicitly synchronize or use non-reentrant/ordered workqueue but this is error-prone. * flush_work() can't wait for multiple instances of the same work item on different CPUs. If a work item is executing on cpu0 and then queued on cpu1, flush_work() can only wait for the one on cpu1. Unfortunately, work items can easily cross CPU boundaries unintentionally when the queueing thread gets migrated. This means that if multiple queuers compete, flush_work() can't even guarantee that the instance queued right before it is finished before returning. * flush_work_sync() was added to work around some of the deficiencies of flush_work(). In addition to the usual flushing, it ensures that all currently executing instances are finished before returning. This operation is expensive as it has to walk all CPUs and at the same time fails to address competing queuer case. Incorrectly using flush_work() when flush_work_sync() is necessary is an easy error to make and can lead to bugs which are difficult to reproduce. * Similar problems exist for flush_delayed_work[_sync](). Other than the cross-cpu access concern, there's no benefit in allowing parallel execution and it's plain silly to have this level of contortion for workqueue which is widely used from core code to extremely obscure drivers. This patch makes all workqueues non-reentrant. If a work item is executing on a different CPU when queueing is requested, it is always queued to that CPU. This guarantees that any given work item can be executing on one CPU at maximum and if a work item is queued and executing, both are on the same CPU. The only behavior change which may affect workqueue users negatively is that non-reentrancy overrides the affinity specified by queue_work_on(). On a reentrant workqueue, the affinity specified by queue_work_on() is always followed. Now, if the work item is executing on one of the CPUs, the work item will be queued there regardless of the requested affinity. I've reviewed all workqueue users which request explicit affinity, and, fortunately, none seems to be crazy enough to exploit parallel execution of the same work item. This adds an additional busy_hash lookup if the work item was previously queued on a different CPU. This shouldn't be noticeable under any sane workload. Work item queueing isn't a very high-frequency operation and they don't jump across CPUs all the time. In a micro benchmark to exaggerate this difference - measuring the time it takes for two work items to repeatedly jump between two CPUs a number (10M) of times with busy_hash table densely populated, the difference was around 3%. While the overhead is measureable, it is only visible in pathological cases and the difference isn't huge. This change brings much needed sanity to workqueue and makes its behavior consistent with timer. I think this is the right tradeoff to make. This enables significant simplification of workqueue API. Simplification patches will follow. Signed-off-by: Tejun Heo <[email protected]> workqueue: gut flush[_delayed]_work_sync() Now that all workqueues are non-reentrant, flush[_delayed]_work_sync() are equivalent to flush[_delayed]_work(). Drop the separate implementation and make them thin wrappers around flush[_delayed]_work(). * start_flush_work() no longer takes @wait_executing as the only left user - flush_work() - always sets it to %true. * __cancel_work_timer() uses flush_work() instead of wait_on_work(). Signed-off-by: Tejun Heo <[email protected]> workqueue: gut system_nrt[_freezable]_wq() Now that all workqueues are non-reentrant, system[_freezable]_wq() are equivalent to system_nrt[_freezable]_wq(). Replace the latter with wrappers around system[_freezable]_wq(). The wrapping goes through inline functions so that __deprecated can be added easily. Signed-off-by: Tejun Heo <[email protected]> workqueue: cosmetic whitespace updates for macro definitions Consistently use the last tab position for '\' line continuation in complex macro definitions. This is to help the following patches. This patch is cosmetic. Signed-off-by: Tejun Heo <[email protected]> workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback() workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so hotcpu_notifier() fits better than cpu_notifier(). When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same. When HOTPLUG_CPU=n, if we use cpu_notifier(), workqueue_cpu_down_callback() will be called during boot to do nothing, and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discarded after boot. If we use hotcpu_notifier(), we can avoid the no-op call of workqueue_cpu_down_callback() and the memory of workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at build time: $ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier -rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier -rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier $ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier text data bss dec hex filename 18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier 18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement cancel_delayed_work() using try_to_grab_pending() cancel_delayed_work() can't be called from IRQ handlers due to its use of del_timer_sync() and can't cancel work items which are already transferred from timer to worklist. Also, unlike other flush and cancel functions, a canceled delayed_work would still point to the last associated cpu_workqueue. If the workqueue is destroyed afterwards and the work item is re-used on a different workqueue, the queueing code can oops trying to dereference already freed cpu_workqueue. This patch reimplements cancel_delayed_work() using try_to_grab_pending() and set_work_cpu_and_clear_pending(). This allows the function to be called from IRQ handlers and makes its behavior consistent with other flush / cancel functions. Signed-off-by: Tejun Heo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Andrew Morton <[email protected]> workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic The compiler may compile the following code into TWO write/modify instructions. worker->flags &= ~WORKER_UNBOUND; worker->flags |= WORKER_REBIND; so the other CPU may temporarily see worker->flags which doesn't have either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup prematurely. Fix it by using single explicit assignment via ACCESS_ONCE(). Because idle workers have another WORKER_NOT_RUNNING flag, this bug doesn't exist for them; however, update it to use the same pattern for consistency. tj: Applied the change to idle workers too and updated comments and patch description a bit. Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026 Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function This doesn't make any functional difference and is purely to help the next patch to be simpler. Signed-off-by: Tejun Heo <[email protected]> Cc: Lai Jiangshan <[email protected]> workqueue: fix possible deadlock in idle worker rebinding Currently, rebind_workers() and idle_worker_rebind() are two-way interlocked. rebind_workers() waits for idle workers to finish rebinding and rebound idle workers wait for rebind_workers() to finish rebinding busy workers before proceeding. Unfortunately, this isn't enough. The second wait from idle workers is implemented as follows. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); rebind_workers() clears WORKER_REBIND, wakes up the idle workers and then returns. If CPU hotplug cycle happens again before one of the idle workers finishes the above wait_event(), rebind_workers() will repeat the first part of the handshake - set WORKER_REBIND again and wait for the idle worker to finish rebinding - and this leads to deadlock because the idle worker would be waiting for WORKER_REBIND to clear. This is fixed by adding another interlocking step at the end - rebind_workers() now waits for all the idle workers to finish the above WORKER_REBIND wait before returning. This ensures that all rebinding steps are complete on all idle workers before the next hotplug cycle can happen. This problem was diagnosed by Lai Jiangshan who also posted a patch to fix the issue, upon which this patch is based. This is the minimal fix and further patches are scheduled for the next merge window to simplify the CPU hotplug path. Signed-off-by: Tejun Heo <[email protected]> Original-patch-by: Lai Jiangshan <[email protected]> LKML-Reference: <[email protected]> workqueue: restore POOL_MANAGING_WORKERS This patch restores POOL_MANAGING_WORKERS which was replaced by pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq manager exclusion". There's a subtle idle worker depletion bug across CPU hotplug events and we need to distinguish an actual manager and CPU hotplug preventing management. POOL_MANAGING_WORKERS will be used for the former and manager_mutex the later. This patch just lays POOL_MANAGING_WORKERS on top of the existing manager_mutex and doesn't introduce any synchronization changes. The next patch will update it. Note that this patch fixes a non-critical anomaly where too_many_workers() may return %true spuriously while CPU hotplug is in progress. While the issue could schedule idle timer spuriously, it didn't trigger any actual misbehavior. tj: Rewrote patch description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible idle worker depletion across CPU hotplug To simplify both normal and CPU hotplug paths, worker management is prevented while CPU hoplug is in progress. This is achieved by CPU hotplug holding the same exclusion mechanism used by workers to ensure there's only one manager per pool. If someone else seems to be performing the manager role, workers proceed to execute work items. CPU hotplug using the same mechanism can lead to idle worker depletion because all workers could proceed to execute work items while CPU hotplug is in progress and CPU hotplug itself wouldn't actually perform the worker management duty - it doesn't guarantee that there's an idle worker left when it releases management. This idle worker depletion, under extreme circumstances, can break forward-progress guarantee and thus lead to deadlock. This patch fixes the bug by using separate mechanisms for manager exclusion among workers and hotplug exclusion. For manager exclusion, POOL_MANAGING_WORKERS which was restored by the previous patch is used. pool->manager_mutex is now only used for exclusion between the elected manager and CPU hotplug. The elected manager won't proceed without holding pool->manager_mutex. This ensures that the worker which won the manager position can't skip managing while CPU hotplug is in progress. It will block on manager_mutex and perform management after CPU hotplug is complete. Note that hotplug may happen while waiting for manager_mutex. A manager isn't either on idle or busy list and thus the hoplug code can't unbind/rebind it. Make the manager handle its own un/rebinding. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn() busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed (CPU is down again). This used to be okay because the flag wasn't used for anything else. However, after 25511a477 "workqueue: reimplement CPU online rebinding to handle idle workers", WORKER_REBIND is also used to command idle workers to rebind. If not cleared, the worker may confuse the next CPU_UP cycle by having REBIND spuriously set or oops / get stuck by prematurely calling idle_worker_rebind(). WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5 00() Hardware name: Bochs Modules linked in: test_wq(O-) Pid: 33, comm: kworker/1:1 Tainted: G O 3.6.0-rc1-work+ #3 Call Trace: [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500 [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 ---[ end trace e977cf20f4661968 ]--- BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: test_wq(O-) CPU 0 Pid: 33, comm: kworker/1:1 Tainted: G W O 3.6.0-rc1-work+ #3 Bochs Bochs RIP: 0010:[<ffffffff810b3db0>] [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP: 0018:ffff88001e1c9de0 EFLAGS: 00010086 RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009 RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580 R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900) Stack: ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010 ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340 Call Trace: [<ffffffff810bc16e>] kthread+0xbe/0xd0 [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10 Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b RIP [<ffffffff810b3db0>] worker_thread+0x360/0x500 RSP <ffff88001e1c9de0> CR2: 0000000000000000 There was no reason to keep WORKER_REBIND on failure in the first place - WORKER_UNBOUND is guaranteed to be set in such cases preventing incorrectly activating concurrency management. Always clear WORKER_REBIND. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: reimplement idle worker rebinding Currently rebind_workers() uses rebinds idle workers synchronously before proceeding to requesting busy workers to rebind. This is necessary because all workers on @worker_pool->idle_list must be bound before concurrency management local wake-ups from the busy workers take place. Unfortunately, the synchronous idle rebinding is quite complicated. This patch reimplements idle rebinding to simplify the code path. Rather than trying to make all idle workers bound before rebinding busy workers, we simply remove all to-be-bound idle workers from the idle list and let them add themselves back after completing rebinding (successful or not). As only workers which finished rebinding can on on the idle worker list, the idle worker list is guaranteed to have only bound workers unless CPU went down again and local wake-ups are safe. After the change, @worker_pool->nr_idle may deviate than the actual number of idle workers on @worker_pool->idle_list. More specifically, nr_idle may be non-zero while ->idle_list is empty. All users of ->nr_idle and ->idle_list are audited. The only affected one is too_many_workers() which is updated to check %false if ->idle_list is empty regardless of ->nr_idle. After this patch, rebind_workers() no longer performs the nasty idle-rebind retries which require temporary release of gcwq->lock, and both unbinding and rebinding are atomic w.r.t. global_cwq->lock. worker->idle_rebind and global_cwq->rebind_hold are now unnecessary and removed along with the definition of struct idle_rebind. Changed from V1: 1) remove unlikely from too_many_workers(), ->idle_list can be empty anytime, even before this patch, no reason to use unlikely. 2) fix a small rebasing mistake. (which is from rebasing the orignal fixing patch to for-next) 3) add a lot of comments. 4) clear WORKER_REBIND unconditionaly in idle_worker_rebind() tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for busy rebinding Because the old unbind/rebinding implementation wasn't atomic w.r.t. GCWQ_DISASSOCIATED manipulation which is protected by global_cwq->lock, we had to use two flags, WORKER_UNBOUND and WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with back-to-back CPU hotplug operations; otherwise, completion of rebinding while another unbinding is in progress could clear UNBIND prematurely. Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED, there's no need to use two flags. Just one is enough. Don't use WORKER_REBIND for busy rebinding. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: WORKER_REBIND is no longer necessary for idle rebinding Now both worker destruction and idle rebinding remove the worker from idle list while it's still idle, so list_empty(&worker->entry) can be used to test whether either is pending and WORKER_DIE to distinguish between the two instead making WORKER_REBIND unnecessary. Use list_empty(&worker->entry) to determine whether destruction or rebinding is pending. This simplifies worker state transitions. WORKER_REBIND is not needed anymore. Remove it. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: rename manager_mutex to assoc_mutex Now that manager_mutex's role has changed from synchronizing manager role to excluding hotplug against manager, the name is misleading. As it is protecting the CPU-association of the gcwq now, rename it to assoc_mutex. This patch is pure rename and doesn't introduce any functional change. tj: Updated comments and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use __cpuinit instead of __devinit for cpu callbacks For workqueue hotplug callbacks, it makes less sense to use __devinit which discards the memory after boot if !HOTPLUG. __cpuinit, which discards the memory after boot if !HOTPLUG_CPU fits better. tj: Updated description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: fix possible stall on try_to_grab_pending() of a delayed work item Currently, when try_to_grab_pending() grabs a delayed work item, it leaves its linked work items alone on the delayed_works. The linked work items are always NO_COLOR and will cause future cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and may cause the whole cwq to stall. For example, state: cwq->max_active = 1, cwq->nr_active = 1 one work in cwq->pool, many in cwq->delayed_works. step1: try_to_grab_pending() removes a work item from delayed_works but leaves its NO_COLOR linked work items on it. step2: Later on, cwq_activate_first_delayed() activates the linked work item increasing ->nr_active. step3: cwq->nr_active = 1, but all activated work items of the cwq are NO_COLOR. When they finish, cwq->nr_active will not be decreased due to NO_COLOR, and no further work items will be activated from cwq->delayed_works. the cwq stalls. Fix it by ensuring the target work item is activated before stealing PENDING in try_to_grab_pending(). This ensures that all the linked work items are activated without incorrectly bumping cwq->nr_active. tj: Updated comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: reimplement work_on_cpu() using system_wq The existing work_on_cpu() implementation is hugely inefficient. It creates a new kthread, execute that single function and then let the kthread die on each invocation. Now that system_wq can handle concurrent executions, there's no advantage of doing this. Reimplement work_on_cpu() using system_wq which makes it simpler and way more efficient. stable: While this isn't a fix in itself, it's needed to fix a workqueue related bug in cpufreq/powernow-k8. AFAICS, this shouldn't break other existing users. Signed-off-by: Tejun Heo <[email protected]> Acked-by: Jiri Kosina <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Bjorn Helgaas <[email protected]> Cc: Len Brown <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: [email protected] workqueue: introduce cwq_set_max_active() helper for thaw_workqueues() Using a helper instead of open code makes thaw_workqueues() clearer. The helper will also be used by the next patch. tj: Slight update to comment and description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: use cwq_set_max_active() helper for workqueue_set_max_active() workqueue_set_max_active() may increase ->max_active without activating delayed works and may make the activation order differ from the queueing order. Both aren't strictly bugs but the resulting behavior could be a bit odd. To make things more consistent, use cwq_set_max_active() helper which immediately makes use of the newly increased max_mactive if there are delayed work items and also keeps the activation order. tj: Slight update to description. Signed-off-by: Lai Jiangshan <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending() e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made try_to_grab_pending() safe to use from irq context but forgot to remove WARN_ON_ONCE(in_irq()). Remove it. Signed-off-by: Tejun Heo <[email protected]> Reported-by: Fengguang Wu <[email protected]> workqueue: cancel_delayed_work() should return %false if work item is idle 57b30ae77b ("workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()") made cancel_delayed_work() always return %true unless someone else is also trying to cancel the work item, which is broken - if the target work item is idle, the return value should be %false. try_to_grab_pending() indicates that the target work item was idle by zero return value. Use it for return. Note that this brings cancel_delayed_work() in line with __cancel_work_timer() in return value handling. Signed-off-by: Dan Magenheimer <[email protected]> Signed-off-by: Tejun Heo <[email protected]> LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default> workqueue: exit rescuer_thread() as TASK_RUNNING A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Cc: [email protected] workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay 8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()") implemented mod_delayed_work[_on]() using the improved try_to_grab_pending(). The function is later used, among others, to replace [__]candel_delayed_work() + queue_delayed_work() combinations. Unfortunately, a delayed_work item w/ zero @delay is handled slightly differently by mod_delayed_work_on() compared to queue_delayed_work_on(). The latter skips timer altogether and directly queues it using queue_work_on() while the former schedules timer which will expire on the closest tick. This means, when @delay is zero, that [__]cancel_delayed_work() + queue_delayed_work_on() makes the target item immediately executable while mod_delayed_work_on() may induce delay of upto a full tick. This somewhat subtle difference breaks some of the converted users. e.g. block queue plugging uses delayed_work for deferred processing and uses mod_delayed_work_on() when the queue needs to be immediately unplugged. The above problem manifested as noticeably higher number of context switches under certain circumstances. The difference in behavior was caused by missing special case handling for 0 delay in mod_delayed_work_on() compared to queue_delayed_work_on(). Joonsoo Kim posted a patch to add it - ("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1]. The patch was queued for 3.8 but it was described as optimization and I missed that it was a correctness issue. As both queue_delayed_work_on() and mod_delayed_work_on() use __queue_delayed_work() for queueing, it seems that the better approach is to move the 0 delay special handling to the function instead of duplicating it in mod_delayed_work_on(). Fix the problem by moving 0 delay special case handling from queue_delayed_work_on() to __queue_delayed_work(). This replaces Joonsoo's patch. [1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012 Signed-off-by: Tejun Heo <[email protected]> Reported-and-tested-by: Anders Kaseorg <[email protected]> Reported-and-tested-by: Zlatko Calusic <[email protected]> LKML-Reference: <[email protected]> LKML-Reference: <[email protected]> Cc: Joonsoo Kim <[email protected]> workqueue: trivial fix for return statement in work_busy() Return type of work_busy() is unsigned int. There is return statement returning boolean value, 'false' in work_busy(). It is not problem, because 'false' may be treated '0'. However, fixing it would make code robust. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up() Recently, workqueue code has gone through some changes and we found some bugs related to concurrency management operations happening on the wrong CPU. When a worker is concurrency managed (!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and woken up to that cpu. Add WARN_ON_ONCE() to verify this. Signed-off-by: Joonsoo Kim <[email protected]> Signed-off-by: Tejun Heo <[email protected]> workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s 8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in megaraid - it allocated work_struct, casted it to delayed_work and then pass that into queue_delayed_work(). Previously, this was okay because 0 @delay short-circuited to queue_work() before doing anything with delayed_work. 8852aac25e moved 0 @delay test into __queue_delayed_work() after sanity check on delayed_work making megaraid trigger BUG_ON(). Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix BUG_ON() from incorrect use of delayed work"), this patch converts BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such abusers, if there are more, trigger warning but don't crash the machine. Signed-off-by: Tejun Heo <[email protected]> Cc: Xiaotian Feng <[email protected]> wq Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229 Signed-off-by: franciscofranco <[email protected]> Signed-off-by: tarun93 <[email protected]> Signed-off-by: Hemant Sharma <[email protected]>
tarunkapadia93
pushed a commit
to tarunkapadia93/android_kernel_xiaomi_armani
that referenced
this issue
Feb 25, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] #1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] #2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: tarun93 <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Feb 26, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Mar 21, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Mar 23, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Jun 14, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Jun 14, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Aug 16, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
added a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Sep 15, 2016
Change-Id: Ib07ead1e23e816c96552254c049016825a164f2c UPSTREAM: zram/zcomp: use GFP_NOIO to allocate streams (cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: try vmalloc() after kmalloc() (cherry picked from commit d913897abace843bba20249f3190167f7895e9c3) When we're using LZ4 multi compression streams for zram swap, we found out page allocation failure message in system running test. That was not only once, but a few(2 - 5 times per test). Also, some failure cases were continually occurring to try allocation order 3. In order to make parallel compression private data, we should call kzalloc() with order 2/3 in runtime(lzo/lz4). But if there is no order 2/3 size memory to allocate in that time, page allocation fails. This patch makes to use vmalloc() as fallback of kmalloc(), this prevents page alloc failure warning. After using this, we never found warning message in running test, also It could reduce process startup latency about 60-120ms in each case. For reference a call trace : Binder_1: page allocation failure: order:3, mode:0x10c0d0 CPU: 0 PID: 424 Comm: Binder_1 Tainted: GW 3.10.49-perf-g991d02b-dirty #20 Call trace: dump_backtrace+0x0/0x270 show_stack+0x10/0x1c dump_stack+0x1c/0x28 warn_alloc_failed+0xfc/0x11c __alloc_pages_nodemask+0x724/0x7f0 __get_free_pages+0x14/0x5c kmalloc_order_trace+0x38/0xd8 zcomp_lz4_create+0x2c/0x38 zcomp_strm_alloc+0x34/0x78 zcomp_strm_multi_find+0x124/0x1ec zcomp_strm_find+0xc/0x18 zram_bvec_rw+0x2fc/0x780 zram_make_request+0x25c/0x2d4 generic_make_request+0x80/0xbc submit_bio+0xa4/0x15c __swap_writepage+0x218/0x230 swap_writepage+0x3c/0x4c shrink_page_list+0x51c/0x8d0 shrink_inactive_list+0x3f8/0x60c shrink_lruvec+0x33c/0x4cc shrink_zone+0x3c/0x100 try_to_free_pages+0x2b8/0x54c __alloc_pages_nodemask+0x514/0x7f0 __get_free_pages+0x14/0x5c proc_info_read+0x50/0xe4 vfs_read+0xa0/0x12c SyS_read+0x44/0x74 DMA: 3397*4kB (MC) 26*8kB (RC) 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 13796kB [[email protected]: change vmalloc gfp and adding comment about gfp] [[email protected]: tweak comments and styles] Signed-off-by: Kyeongdon Kim <[email protected]> Signed-off-by: Minchan Kim <[email protected]> Acked-by: Sergey Senozhatsky <[email protected]> Sergey Senozhatsky <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: pass gfp from zcomp frontend to backend (cherry picked from commit 75d8947a36d0c9aedd69118d1f14bf424005c7c2) Each zcomp backend uses own gfp flag but it's pointless because the context they could be called is driven by upper layer(ie, zcomp frontend). As well, zcomp frondend could call them in different context. One context(ie, zram init part) is it should be better to make sure successful allocation other context(ie, further stream allocation part for accelarating I/O speed) is just optional so let's pass gfp down from driver (ie, zcomp frontend) like normal MM convention. [[email protected]: add missing __vmalloc zero and highmem gfps] Signed-off-by: Minchan Kim <[email protected]> Signed-off-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram/zcomp: do not zero out zcomp private pages (cherry picked from commit e02d238c9852a91b30da9ea32ce36d1416cdc683) Do not __GFP_ZERO allocated zcomp ->private pages. We keep allocated streams around and use them for read/write requests, so we supply a zeroed out ->private to compression algorithm as a scratch buffer only once -- the first time we use that stream. For the rest of IO requests served by this stream ->private usually contains some temporarily data from the previous requests. Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: block: disable entropy contributions for nonrot devices (cherry picked from commit b277da0a8a594308e17881f4926879bd5fca2a2d) Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set QUEUE_FLAG_NONROT. Historically, all block devices have automatically made entropy contributions. But as previously stated in commit e2e1a14 ("block: add sysfs knob for turning off disk entropy contributions"): - On SSD disks, the completion times aren't as random as they are for rotational drives. So it's questionable whether they should contribute to the random pool in the first place. - Calling add_disk_randomness() has a lot of overhead. There are more reliable sources for randomness than non-rotational block devices. From a security perspective it is better to err on the side of caution than to allow entropy contributions from unreliable "random" sources. Change-Id: I2a4f86bacee8786e2cb1a82d45156338f79d64e0 Signed-off-by: Mike Snitzer <[email protected]> Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: hurtsky <[email protected]> Signed-off-by: hemantbeast <[email protected]> Conflicts: drivers/block/zram/zram_drv.c drivers/staging/Kconfig drivers/staging/Makefile mm/Kconfig mm/Makefile Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Sep 21, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 3, 2016
Change-Id: Ib07ead1e23e816c96552254c049016825a164f2c UPSTREAM: zram/zcomp: use GFP_NOIO to allocate streams (cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: try vmalloc() after kmalloc() (cherry picked from commit d913897abace843bba20249f3190167f7895e9c3) When we're using LZ4 multi compression streams for zram swap, we found out page allocation failure message in system running test. That was not only once, but a few(2 - 5 times per test). Also, some failure cases were continually occurring to try allocation order 3. In order to make parallel compression private data, we should call kzalloc() with order 2/3 in runtime(lzo/lz4). But if there is no order 2/3 size memory to allocate in that time, page allocation fails. This patch makes to use vmalloc() as fallback of kmalloc(), this prevents page alloc failure warning. After using this, we never found warning message in running test, also It could reduce process startup latency about 60-120ms in each case. For reference a call trace : Binder_1: page allocation failure: order:3, mode:0x10c0d0 CPU: 0 PID: 424 Comm: Binder_1 Tainted: GW 3.10.49-perf-g991d02b-dirty #20 Call trace: dump_backtrace+0x0/0x270 show_stack+0x10/0x1c dump_stack+0x1c/0x28 warn_alloc_failed+0xfc/0x11c __alloc_pages_nodemask+0x724/0x7f0 __get_free_pages+0x14/0x5c kmalloc_order_trace+0x38/0xd8 zcomp_lz4_create+0x2c/0x38 zcomp_strm_alloc+0x34/0x78 zcomp_strm_multi_find+0x124/0x1ec zcomp_strm_find+0xc/0x18 zram_bvec_rw+0x2fc/0x780 zram_make_request+0x25c/0x2d4 generic_make_request+0x80/0xbc submit_bio+0xa4/0x15c __swap_writepage+0x218/0x230 swap_writepage+0x3c/0x4c shrink_page_list+0x51c/0x8d0 shrink_inactive_list+0x3f8/0x60c shrink_lruvec+0x33c/0x4cc shrink_zone+0x3c/0x100 try_to_free_pages+0x2b8/0x54c __alloc_pages_nodemask+0x514/0x7f0 __get_free_pages+0x14/0x5c proc_info_read+0x50/0xe4 vfs_read+0xa0/0x12c SyS_read+0x44/0x74 DMA: 3397*4kB (MC) 26*8kB (RC) 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 13796kB [[email protected]: change vmalloc gfp and adding comment about gfp] [[email protected]: tweak comments and styles] Signed-off-by: Kyeongdon Kim <[email protected]> Signed-off-by: Minchan Kim <[email protected]> Acked-by: Sergey Senozhatsky <[email protected]> Sergey Senozhatsky <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: pass gfp from zcomp frontend to backend (cherry picked from commit 75d8947a36d0c9aedd69118d1f14bf424005c7c2) Each zcomp backend uses own gfp flag but it's pointless because the context they could be called is driven by upper layer(ie, zcomp frontend). As well, zcomp frondend could call them in different context. One context(ie, zram init part) is it should be better to make sure successful allocation other context(ie, further stream allocation part for accelarating I/O speed) is just optional so let's pass gfp down from driver (ie, zcomp frontend) like normal MM convention. [[email protected]: add missing __vmalloc zero and highmem gfps] Signed-off-by: Minchan Kim <[email protected]> Signed-off-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram/zcomp: do not zero out zcomp private pages (cherry picked from commit e02d238c9852a91b30da9ea32ce36d1416cdc683) Do not __GFP_ZERO allocated zcomp ->private pages. We keep allocated streams around and use them for read/write requests, so we supply a zeroed out ->private to compression algorithm as a scratch buffer only once -- the first time we use that stream. For the rest of IO requests served by this stream ->private usually contains some temporarily data from the previous requests. Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: block: disable entropy contributions for nonrot devices (cherry picked from commit b277da0a8a594308e17881f4926879bd5fca2a2d) Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set QUEUE_FLAG_NONROT. Historically, all block devices have automatically made entropy contributions. But as previously stated in commit e2e1a14 ("block: add sysfs knob for turning off disk entropy contributions"): - On SSD disks, the completion times aren't as random as they are for rotational drives. So it's questionable whether they should contribute to the random pool in the first place. - Calling add_disk_randomness() has a lot of overhead. There are more reliable sources for randomness than non-rotational block devices. From a security perspective it is better to err on the side of caution than to allow entropy contributions from unreliable "random" sources. Change-Id: I2a4f86bacee8786e2cb1a82d45156338f79d64e0 Signed-off-by: Mike Snitzer <[email protected]> Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: hurtsky <[email protected]> Conflicts: drivers/block/zram/zram_drv.c drivers/staging/Kconfig drivers/staging/Makefile mm/Kconfig mm/Makefile Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 11, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 11, 2016
Change-Id: Ib07ead1e23e816c96552254c049016825a164f2c UPSTREAM: zram/zcomp: use GFP_NOIO to allocate streams (cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: try vmalloc() after kmalloc() (cherry picked from commit d913897abace843bba20249f3190167f7895e9c3) When we're using LZ4 multi compression streams for zram swap, we found out page allocation failure message in system running test. That was not only once, but a few(2 - 5 times per test). Also, some failure cases were continually occurring to try allocation order 3. In order to make parallel compression private data, we should call kzalloc() with order 2/3 in runtime(lzo/lz4). But if there is no order 2/3 size memory to allocate in that time, page allocation fails. This patch makes to use vmalloc() as fallback of kmalloc(), this prevents page alloc failure warning. After using this, we never found warning message in running test, also It could reduce process startup latency about 60-120ms in each case. For reference a call trace : Binder_1: page allocation failure: order:3, mode:0x10c0d0 CPU: 0 PID: 424 Comm: Binder_1 Tainted: GW 3.10.49-perf-g991d02b-dirty #20 Call trace: dump_backtrace+0x0/0x270 show_stack+0x10/0x1c dump_stack+0x1c/0x28 warn_alloc_failed+0xfc/0x11c __alloc_pages_nodemask+0x724/0x7f0 __get_free_pages+0x14/0x5c kmalloc_order_trace+0x38/0xd8 zcomp_lz4_create+0x2c/0x38 zcomp_strm_alloc+0x34/0x78 zcomp_strm_multi_find+0x124/0x1ec zcomp_strm_find+0xc/0x18 zram_bvec_rw+0x2fc/0x780 zram_make_request+0x25c/0x2d4 generic_make_request+0x80/0xbc submit_bio+0xa4/0x15c __swap_writepage+0x218/0x230 swap_writepage+0x3c/0x4c shrink_page_list+0x51c/0x8d0 shrink_inactive_list+0x3f8/0x60c shrink_lruvec+0x33c/0x4cc shrink_zone+0x3c/0x100 try_to_free_pages+0x2b8/0x54c __alloc_pages_nodemask+0x514/0x7f0 __get_free_pages+0x14/0x5c proc_info_read+0x50/0xe4 vfs_read+0xa0/0x12c SyS_read+0x44/0x74 DMA: 3397*4kB (MC) 26*8kB (RC) 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 13796kB [[email protected]: change vmalloc gfp and adding comment about gfp] [[email protected]: tweak comments and styles] Signed-off-by: Kyeongdon Kim <[email protected]> Signed-off-by: Minchan Kim <[email protected]> Acked-by: Sergey Senozhatsky <[email protected]> Sergey Senozhatsky <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: pass gfp from zcomp frontend to backend (cherry picked from commit 75d8947a36d0c9aedd69118d1f14bf424005c7c2) Each zcomp backend uses own gfp flag but it's pointless because the context they could be called is driven by upper layer(ie, zcomp frontend). As well, zcomp frondend could call them in different context. One context(ie, zram init part) is it should be better to make sure successful allocation other context(ie, further stream allocation part for accelarating I/O speed) is just optional so let's pass gfp down from driver (ie, zcomp frontend) like normal MM convention. [[email protected]: add missing __vmalloc zero and highmem gfps] Signed-off-by: Minchan Kim <[email protected]> Signed-off-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram/zcomp: do not zero out zcomp private pages (cherry picked from commit e02d238c9852a91b30da9ea32ce36d1416cdc683) Do not __GFP_ZERO allocated zcomp ->private pages. We keep allocated streams around and use them for read/write requests, so we supply a zeroed out ->private to compression algorithm as a scratch buffer only once -- the first time we use that stream. For the rest of IO requests served by this stream ->private usually contains some temporarily data from the previous requests. Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: block: disable entropy contributions for nonrot devices (cherry picked from commit b277da0a8a594308e17881f4926879bd5fca2a2d) Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set QUEUE_FLAG_NONROT. Historically, all block devices have automatically made entropy contributions. But as previously stated in commit e2e1a14 ("block: add sysfs knob for turning off disk entropy contributions"): - On SSD disks, the completion times aren't as random as they are for rotational drives. So it's questionable whether they should contribute to the random pool in the first place. - Calling add_disk_randomness() has a lot of overhead. There are more reliable sources for randomness than non-rotational block devices. From a security perspective it is better to err on the side of caution than to allow entropy contributions from unreliable "random" sources. Change-Id: I2a4f86bacee8786e2cb1a82d45156338f79d64e0 Signed-off-by: Mike Snitzer <[email protected]> Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: hurtsky <[email protected]> Conflicts: drivers/block/zram/zram_drv.c drivers/staging/Kconfig drivers/staging/Makefile mm/Kconfig mm/Makefile Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
Change-Id: Ib07ead1e23e816c96552254c049016825a164f2c UPSTREAM: zram/zcomp: use GFP_NOIO to allocate streams (cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: try vmalloc() after kmalloc() (cherry picked from commit d913897abace843bba20249f3190167f7895e9c3) When we're using LZ4 multi compression streams for zram swap, we found out page allocation failure message in system running test. That was not only once, but a few(2 - 5 times per test). Also, some failure cases were continually occurring to try allocation order 3. In order to make parallel compression private data, we should call kzalloc() with order 2/3 in runtime(lzo/lz4). But if there is no order 2/3 size memory to allocate in that time, page allocation fails. This patch makes to use vmalloc() as fallback of kmalloc(), this prevents page alloc failure warning. After using this, we never found warning message in running test, also It could reduce process startup latency about 60-120ms in each case. For reference a call trace : Binder_1: page allocation failure: order:3, mode:0x10c0d0 CPU: 0 PID: 424 Comm: Binder_1 Tainted: GW 3.10.49-perf-g991d02b-dirty #20 Call trace: dump_backtrace+0x0/0x270 show_stack+0x10/0x1c dump_stack+0x1c/0x28 warn_alloc_failed+0xfc/0x11c __alloc_pages_nodemask+0x724/0x7f0 __get_free_pages+0x14/0x5c kmalloc_order_trace+0x38/0xd8 zcomp_lz4_create+0x2c/0x38 zcomp_strm_alloc+0x34/0x78 zcomp_strm_multi_find+0x124/0x1ec zcomp_strm_find+0xc/0x18 zram_bvec_rw+0x2fc/0x780 zram_make_request+0x25c/0x2d4 generic_make_request+0x80/0xbc submit_bio+0xa4/0x15c __swap_writepage+0x218/0x230 swap_writepage+0x3c/0x4c shrink_page_list+0x51c/0x8d0 shrink_inactive_list+0x3f8/0x60c shrink_lruvec+0x33c/0x4cc shrink_zone+0x3c/0x100 try_to_free_pages+0x2b8/0x54c __alloc_pages_nodemask+0x514/0x7f0 __get_free_pages+0x14/0x5c proc_info_read+0x50/0xe4 vfs_read+0xa0/0x12c SyS_read+0x44/0x74 DMA: 3397*4kB (MC) 26*8kB (RC) 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 13796kB [[email protected]: change vmalloc gfp and adding comment about gfp] [[email protected]: tweak comments and styles] Signed-off-by: Kyeongdon Kim <[email protected]> Signed-off-by: Minchan Kim <[email protected]> Acked-by: Sergey Senozhatsky <[email protected]> Sergey Senozhatsky <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: pass gfp from zcomp frontend to backend (cherry picked from commit 75d8947a36d0c9aedd69118d1f14bf424005c7c2) Each zcomp backend uses own gfp flag but it's pointless because the context they could be called is driven by upper layer(ie, zcomp frontend). As well, zcomp frondend could call them in different context. One context(ie, zram init part) is it should be better to make sure successful allocation other context(ie, further stream allocation part for accelarating I/O speed) is just optional so let's pass gfp down from driver (ie, zcomp frontend) like normal MM convention. [[email protected]: add missing __vmalloc zero and highmem gfps] Signed-off-by: Minchan Kim <[email protected]> Signed-off-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram/zcomp: do not zero out zcomp private pages (cherry picked from commit e02d238c9852a91b30da9ea32ce36d1416cdc683) Do not __GFP_ZERO allocated zcomp ->private pages. We keep allocated streams around and use them for read/write requests, so we supply a zeroed out ->private to compression algorithm as a scratch buffer only once -- the first time we use that stream. For the rest of IO requests served by this stream ->private usually contains some temporarily data from the previous requests. Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: block: disable entropy contributions for nonrot devices (cherry picked from commit b277da0a8a594308e17881f4926879bd5fca2a2d) Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set QUEUE_FLAG_NONROT. Historically, all block devices have automatically made entropy contributions. But as previously stated in commit e2e1a14 ("block: add sysfs knob for turning off disk entropy contributions"): - On SSD disks, the completion times aren't as random as they are for rotational drives. So it's questionable whether they should contribute to the random pool in the first place. - Calling add_disk_randomness() has a lot of overhead. There are more reliable sources for randomness than non-rotational block devices. From a security perspective it is better to err on the side of caution than to allow entropy contributions from unreliable "random" sources. Change-Id: I2a4f86bacee8786e2cb1a82d45156338f79d64e0 Signed-off-by: Mike Snitzer <[email protected]> Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: hurtsky <[email protected]> Conflicts: drivers/block/zram/zram_drv.c drivers/staging/Kconfig drivers/staging/Makefile mm/Kconfig mm/Makefile Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit bea6832cc8c4a0a9a65dd17da6aaa657fe27bc3e upstream. On architectures where cputime_t is 64 bit type, is possible to trigger divide by zero on do_div(temp, (__force u32) total) line, if total is a non zero number but has lower 32 bit's zeroed. Removing casting is not a good solution since some do_div() implementations do cast to u32 internally. This problem can be triggered in practice on very long lived processes: PID: 2331 TASK: ffff880472814b00 CPU: 2 COMMAND: "oraagent.bin" #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b tarunkapadia93#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2 tarunkapadia93#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00 armani-dev#3 [ffff880472a51cd0] die at ffffffff8100f26b armani-dev#4 [ffff880472a51d00] do_trap at ffffffff814f03f4 #5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff #6 [ffff880472a51e00] divide_error at ffffffff8100be7b [exception RIP: thread_group_times+0x56] RIP: ffffffff81056a16 RSP: ffff880472a51eb8 RFLAGS: 00010046 RAX: bc3572c9fe12d194 RBX: ffff880874150800 RCX: 0000000110266fad RDX: 0000000000000000 RSI: ffff880472a51eb8 RDI: 001038ae7d9633dc RBP: ffff880472a51ef8 R8: 00000000b10a3a64 R9: ffff880874150800 R10: 00007fcba27ab680 R11: 0000000000000202 R12: ffff880472a51f08 R13: ffff880472a51f10 R14: 0000000000000000 R15: 0000000000000007 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff880472a51f00] do_sys_times at ffffffff8108845d #8 [ffff880472a51f40] sys_times at ffffffff81088524 #9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2 RIP: 0000003808caac3a RSP: 00007fcba27ab6d8 RFLAGS: 00000202 RAX: 0000000000000064 RBX: ffffffff8100b0f2 RCX: 0000000000000000 RDX: 00007fcba27ab6e0 RSI: 000000000076d58e RDI: 00007fcba27ab6e0 RBP: 00007fcba27ab700 R8: 0000000000000020 R9: 000000000000091b R10: 00007fcba27ab680 R11: 0000000000000202 R12: 00007fff9ca41940 R13: 0000000000000000 R14: 00007fcba27ac9c0 R15: 00007fff9ca41940 ORIG_RAX: 0000000000000064 CS: 0033 SS: 002b Change-Id: I1e0fa1fa38b86566f5b20e5c0efa0c9eb17b203b Signed-off-by: Stanislaw Gruszka <[email protected]> Signed-off-by: Peter Zijlstra <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit 412d32e6c98527078779e5b515823b2810e40324 upstream. A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 tarunkapadia93#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] tarunkapadia93#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 armani-dev#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] armani-dev#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Change-Id: I144b04ae9c0187b06dd290ecc664d7fb24553a67 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit 504d58745c9ca28d33572e2d8a9990b43e06075d upstream. clockevents_increase_min_delta() calls printk() from under hrtimer_bases.lock. That causes lock inversion on scheduler locks because printk() can call into the scheduler. Lockdep puts it as: ====================================================== [ INFO: possible circular locking dependency detected ] 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 Not tainted ------------------------------------------------------- trinity-main/74 is trying to acquire lock: (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c but task is already holding lock: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (hrtimer_bases.lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197 [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85 [<81080792>] task_clock_event_start+0x3a/0x3f [<810807a4>] task_clock_event_add+0xd/0x14 [<8108259a>] event_sched_in+0xb6/0x17a [<810826a2>] group_sched_in+0x44/0x122 [<81082885>] ctx_sched_in.isra.67+0x105/0x11f [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b [<81082bf6>] __perf_install_in_context+0x8b/0xa3 [<8107eb8e>] remote_function+0x12/0x2a [<8105f5af>] smp_call_function_single+0x2d/0x53 [<8107e17d>] task_function_call+0x30/0x36 [<8107fb82>] perf_install_in_context+0x87/0xbb [<810852c9>] SYSC_perf_event_open+0x5c6/0x701 [<810856f9>] SyS_perf_event_open+0x17/0x19 [<8142f8ee>] syscall_call+0x7/0xb -> armani-dev#4 (&ctx->lock){......}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 -> armani-dev#3 (&rq->lock){-.-.-.}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81040873>] __task_rq_lock+0x33/0x3a [<8104184c>] wake_up_new_task+0x25/0xc2 [<8102474b>] do_fork+0x15c/0x2a0 [<810248a9>] kernel_thread+0x1a/0x1f [<814232a2>] rest_init+0x1a/0x10e [<817af949>] start_kernel+0x303/0x308 [<817af2ab>] i386_start_kernel+0x79/0x7d -> tarunkapadia93#2 (&p->pi_lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<810413dd>] try_to_wake_up+0x1d/0xd6 [<810414cd>] default_wake_function+0xb/0xd [<810461f3>] __wake_up_common+0x39/0x59 [<81046346>] __wake_up+0x29/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> tarunkapadia93#1 (&tty->write_wait){-.....}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<81046332>] __wake_up+0x15/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #0 (&port_lock_key){-.....}: [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105c548>] clockevents_program_event+0xe7/0xf3 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 other info that might help us debug this: Chain exists of: &port_lock_key --> &ctx->lock --> hrtimer_bases.lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(hrtimer_bases.lock); lock(&ctx->lock); lock(hrtimer_bases.lock); lock(&port_lock_key); *** DEADLOCK *** 4 locks held by trinity-main/74: #0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb tarunkapadia93#1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f tarunkapadia93#2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 armani-dev#3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4 stack backtrace: CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003 Call Trace: [<81426f69>] dump_stack+0x16/0x18 [<81425a99>] print_circular_bug+0x18f/0x19c [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104af87>] ? lock_release+0x191/0x223 [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8104416d>] ? __dequeue_entity+0x23/0x27 [<81044505>] ? pick_next_task_fair+0xb1/0x120 [<8142cacc>] __schedule+0x4c6/0x4cb [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108 [<810475b0>] ? trace_hardirqs_off+0xb/0xd [<81056346>] ? rcu_irq_exit+0x64/0x77 Fix the problem by using printk_deferred() which does not call into the scheduler. Change-Id: I6ec5eaa115be3a668f971caa7f59bf970c5f78a4 Reported-by: Fengguang Wu <[email protected]> Signed-off-by: Jan Kara <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit bea6832cc8c4a0a9a65dd17da6aaa657fe27bc3e upstream. On architectures where cputime_t is 64 bit type, is possible to trigger divide by zero on do_div(temp, (__force u32) total) line, if total is a non zero number but has lower 32 bit's zeroed. Removing casting is not a good solution since some do_div() implementations do cast to u32 internally. This problem can be triggered in practice on very long lived processes: PID: 2331 TASK: ffff880472814b00 CPU: 2 COMMAND: "oraagent.bin" #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b tarunkapadia93#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2 tarunkapadia93#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00 armani-dev#3 [ffff880472a51cd0] die at ffffffff8100f26b armani-dev#4 [ffff880472a51d00] do_trap at ffffffff814f03f4 #5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff #6 [ffff880472a51e00] divide_error at ffffffff8100be7b [exception RIP: thread_group_times+0x56] RIP: ffffffff81056a16 RSP: ffff880472a51eb8 RFLAGS: 00010046 RAX: bc3572c9fe12d194 RBX: ffff880874150800 RCX: 0000000110266fad RDX: 0000000000000000 RSI: ffff880472a51eb8 RDI: 001038ae7d9633dc RBP: ffff880472a51ef8 R8: 00000000b10a3a64 R9: ffff880874150800 R10: 00007fcba27ab680 R11: 0000000000000202 R12: ffff880472a51f08 R13: ffff880472a51f10 R14: 0000000000000000 R15: 0000000000000007 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff880472a51f00] do_sys_times at ffffffff8108845d #8 [ffff880472a51f40] sys_times at ffffffff81088524 #9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2 RIP: 0000003808caac3a RSP: 00007fcba27ab6d8 RFLAGS: 00000202 RAX: 0000000000000064 RBX: ffffffff8100b0f2 RCX: 0000000000000000 RDX: 00007fcba27ab6e0 RSI: 000000000076d58e RDI: 00007fcba27ab6e0 RBP: 00007fcba27ab700 R8: 0000000000000020 R9: 000000000000091b R10: 00007fcba27ab680 R11: 0000000000000202 R12: 00007fff9ca41940 R13: 0000000000000000 R14: 00007fcba27ac9c0 R15: 00007fff9ca41940 ORIG_RAX: 0000000000000064 CS: 0033 SS: 002b Change-Id: I1e0fa1fa38b86566f5b20e5c0efa0c9eb17b203b Signed-off-by: Stanislaw Gruszka <[email protected]> Signed-off-by: Peter Zijlstra <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit 412d32e6c98527078779e5b515823b2810e40324 upstream. A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling off, never to be seen again. In the case where this occurred, an exiting thread hit reiserfs homebrew conditional resched while holding a mutex, bringing the box to its knees. PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush" #0 [ffff8808157e7670] schedule at ffffffff8143f489 tarunkapadia93#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs] tarunkapadia93#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14 armani-dev#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs] armani-dev#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f [exception RIP: kernel_thread_helper] RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18 RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 Change-Id: I144b04ae9c0187b06dd290ecc664d7fb24553a67 Signed-off-by: Mike Galbraith <[email protected]> Signed-off-by: Tejun Heo <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Dec 27, 2016
commit 504d58745c9ca28d33572e2d8a9990b43e06075d upstream. clockevents_increase_min_delta() calls printk() from under hrtimer_bases.lock. That causes lock inversion on scheduler locks because printk() can call into the scheduler. Lockdep puts it as: ====================================================== [ INFO: possible circular locking dependency detected ] 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 Not tainted ------------------------------------------------------- trinity-main/74 is trying to acquire lock: (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c but task is already holding lock: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (hrtimer_bases.lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197 [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85 [<81080792>] task_clock_event_start+0x3a/0x3f [<810807a4>] task_clock_event_add+0xd/0x14 [<8108259a>] event_sched_in+0xb6/0x17a [<810826a2>] group_sched_in+0x44/0x122 [<81082885>] ctx_sched_in.isra.67+0x105/0x11f [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b [<81082bf6>] __perf_install_in_context+0x8b/0xa3 [<8107eb8e>] remote_function+0x12/0x2a [<8105f5af>] smp_call_function_single+0x2d/0x53 [<8107e17d>] task_function_call+0x30/0x36 [<8107fb82>] perf_install_in_context+0x87/0xbb [<810852c9>] SYSC_perf_event_open+0x5c6/0x701 [<810856f9>] SyS_perf_event_open+0x17/0x19 [<8142f8ee>] syscall_call+0x7/0xb -> armani-dev#4 (&ctx->lock){......}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 -> armani-dev#3 (&rq->lock){-.-.-.}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81040873>] __task_rq_lock+0x33/0x3a [<8104184c>] wake_up_new_task+0x25/0xc2 [<8102474b>] do_fork+0x15c/0x2a0 [<810248a9>] kernel_thread+0x1a/0x1f [<814232a2>] rest_init+0x1a/0x10e [<817af949>] start_kernel+0x303/0x308 [<817af2ab>] i386_start_kernel+0x79/0x7d -> tarunkapadia93#2 (&p->pi_lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<810413dd>] try_to_wake_up+0x1d/0xd6 [<810414cd>] default_wake_function+0xb/0xd [<810461f3>] __wake_up_common+0x39/0x59 [<81046346>] __wake_up+0x29/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> tarunkapadia93#1 (&tty->write_wait){-.....}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<81046332>] __wake_up+0x15/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #0 (&port_lock_key){-.....}: [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105c548>] clockevents_program_event+0xe7/0xf3 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 other info that might help us debug this: Chain exists of: &port_lock_key --> &ctx->lock --> hrtimer_bases.lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(hrtimer_bases.lock); lock(&ctx->lock); lock(hrtimer_bases.lock); lock(&port_lock_key); *** DEADLOCK *** 4 locks held by trinity-main/74: #0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb tarunkapadia93#1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f tarunkapadia93#2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 armani-dev#3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4 stack backtrace: CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b tarunkapadia93#2 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003 Call Trace: [<81426f69>] dump_stack+0x16/0x18 [<81425a99>] print_circular_bug+0x18f/0x19c [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104af87>] ? lock_release+0x191/0x223 [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8104416d>] ? __dequeue_entity+0x23/0x27 [<81044505>] ? pick_next_task_fair+0xb1/0x120 [<8142cacc>] __schedule+0x4c6/0x4cb [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108 [<810475b0>] ? trace_hardirqs_off+0xb/0xd [<81056346>] ? rcu_irq_exit+0x64/0x77 Fix the problem by using printk_deferred() which does not call into the scheduler. Change-Id: I6ec5eaa115be3a668f971caa7f59bf970c5f78a4 Reported-by: Fengguang Wu <[email protected]> Signed-off-by: Jan Kara <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Feb 13, 2017
Change-Id: Ib07ead1e23e816c96552254c049016825a164f2c UPSTREAM: zram/zcomp: use GFP_NOIO to allocate streams (cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: try vmalloc() after kmalloc() (cherry picked from commit d913897abace843bba20249f3190167f7895e9c3) When we're using LZ4 multi compression streams for zram swap, we found out page allocation failure message in system running test. That was not only once, but a few(2 - 5 times per test). Also, some failure cases were continually occurring to try allocation order 3. In order to make parallel compression private data, we should call kzalloc() with order 2/3 in runtime(lzo/lz4). But if there is no order 2/3 size memory to allocate in that time, page allocation fails. This patch makes to use vmalloc() as fallback of kmalloc(), this prevents page alloc failure warning. After using this, we never found warning message in running test, also It could reduce process startup latency about 60-120ms in each case. For reference a call trace : Binder_1: page allocation failure: order:3, mode:0x10c0d0 CPU: 0 PID: 424 Comm: Binder_1 Tainted: GW 3.10.49-perf-g991d02b-dirty #20 Call trace: dump_backtrace+0x0/0x270 show_stack+0x10/0x1c dump_stack+0x1c/0x28 warn_alloc_failed+0xfc/0x11c __alloc_pages_nodemask+0x724/0x7f0 __get_free_pages+0x14/0x5c kmalloc_order_trace+0x38/0xd8 zcomp_lz4_create+0x2c/0x38 zcomp_strm_alloc+0x34/0x78 zcomp_strm_multi_find+0x124/0x1ec zcomp_strm_find+0xc/0x18 zram_bvec_rw+0x2fc/0x780 zram_make_request+0x25c/0x2d4 generic_make_request+0x80/0xbc submit_bio+0xa4/0x15c __swap_writepage+0x218/0x230 swap_writepage+0x3c/0x4c shrink_page_list+0x51c/0x8d0 shrink_inactive_list+0x3f8/0x60c shrink_lruvec+0x33c/0x4cc shrink_zone+0x3c/0x100 try_to_free_pages+0x2b8/0x54c __alloc_pages_nodemask+0x514/0x7f0 __get_free_pages+0x14/0x5c proc_info_read+0x50/0xe4 vfs_read+0xa0/0x12c SyS_read+0x44/0x74 DMA: 3397*4kB (MC) 26*8kB (RC) 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 13796kB [[email protected]: change vmalloc gfp and adding comment about gfp] [[email protected]: tweak comments and styles] Signed-off-by: Kyeongdon Kim <[email protected]> Signed-off-by: Minchan Kim <[email protected]> Acked-by: Sergey Senozhatsky <[email protected]> Sergey Senozhatsky <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram: pass gfp from zcomp frontend to backend (cherry picked from commit 75d8947a36d0c9aedd69118d1f14bf424005c7c2) Each zcomp backend uses own gfp flag but it's pointless because the context they could be called is driven by upper layer(ie, zcomp frontend). As well, zcomp frondend could call them in different context. One context(ie, zram init part) is it should be better to make sure successful allocation other context(ie, further stream allocation part for accelarating I/O speed) is just optional so let's pass gfp down from driver (ie, zcomp frontend) like normal MM convention. [[email protected]: add missing __vmalloc zero and highmem gfps] Signed-off-by: Minchan Kim <[email protected]> Signed-off-by: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: zram/zcomp: do not zero out zcomp private pages (cherry picked from commit e02d238c9852a91b30da9ea32ce36d1416cdc683) Do not __GFP_ZERO allocated zcomp ->private pages. We keep allocated streams around and use them for read/write requests, so we supply a zeroed out ->private to compression algorithm as a scratch buffer only once -- the first time we use that stream. For the rest of IO requests served by this stream ->private usually contains some temporarily data from the previous requests. Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> UPSTREAM: block: disable entropy contributions for nonrot devices (cherry picked from commit b277da0a8a594308e17881f4926879bd5fca2a2d) Clear QUEUE_FLAG_ADD_RANDOM in all block drivers that set QUEUE_FLAG_NONROT. Historically, all block devices have automatically made entropy contributions. But as previously stated in commit e2e1a14 ("block: add sysfs knob for turning off disk entropy contributions"): - On SSD disks, the completion times aren't as random as they are for rotational drives. So it's questionable whether they should contribute to the random pool in the first place. - Calling add_disk_randomness() has a lot of overhead. There are more reliable sources for randomness than non-rotational block devices. From a security perspective it is better to err on the side of caution than to allow entropy contributions from unreliable "random" sources. Change-Id: I2a4f86bacee8786e2cb1a82d45156338f79d64e0 Signed-off-by: Mike Snitzer <[email protected]> Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: hurtsky <[email protected]> Conflicts: drivers/block/zram/zram_drv.c drivers/staging/Kconfig drivers/staging/Makefile mm/Kconfig mm/Makefile Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
Aug 14, 2017
We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: [ 747.233722] inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. [ 747.233724] git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 747.233725] (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233733] {IN-RECLAIM_FS-W} state was registered at: [ 747.233735] [<ffffffff8107b8e9>] __lock_acquire+0x8da/0x117b [ 747.233738] [<ffffffff8107c950>] lock_acquire+0x10c/0x1a7 [ 747.233740] [<ffffffff811e323e>] start_this_handle+0x52d/0x555 [ 747.233742] [<ffffffff811e331a>] jbd2__journal_start+0xb4/0x237 [ 747.233744] [<ffffffff811cc6c7>] __ext4_journal_start_sb+0x108/0x17e [ 747.233748] [<ffffffff811a90bf>] ext4_dirty_inode+0x32/0x61 [ 747.233750] [<ffffffff8115f37e>] __mark_inode_dirty+0x16b/0x60c [ 747.233754] [<ffffffff81150ad6>] iput+0x11e/0x274 [ 747.233757] [<ffffffff8114bfbd>] __dentry_kill+0x148/0x1b8 [ 747.233759] [<ffffffff8114c9d9>] shrink_dentry_list+0x274/0x44a [ 747.233761] [<ffffffff8114d38a>] prune_dcache_sb+0x4a/0x55 [ 747.233763] [<ffffffff8113b1ad>] super_cache_scan+0xfc/0x176 [ 747.233767] [<ffffffff810fa089>] shrink_slab.part.14.constprop.25+0x2a2/0x4d3 [ 747.233770] [<ffffffff810fcccb>] shrink_zone+0x74/0x140 [ 747.233772] [<ffffffff810fd924>] kswapd+0x6b7/0x930 [ 747.233774] [<ffffffff81058887>] kthread+0x107/0x10f [ 747.233778] [<ffffffff814fadff>] ret_from_fork+0x3f/0x70 [ 747.233783] irq event stamp: 138297 [ 747.233784] hardirqs last enabled at (138297): [<ffffffff8107aff3>] debug_check_no_locks_freed+0x113/0x12f [ 747.233786] hardirqs last disabled at (138296): [<ffffffff8107af13>] debug_check_no_locks_freed+0x33/0x12f [ 747.233788] softirqs last enabled at (137818): [<ffffffff81040f89>] __do_softirq+0x2d3/0x3e9 [ 747.233792] softirqs last disabled at (137813): [<ffffffff81041292>] irq_exit+0x41/0x95 [ 747.233794] other info that might help us debug this: [ 747.233796] Possible unsafe locking scenario: [ 747.233797] CPU0 [ 747.233798] ---- [ 747.233799] lock(jbd2_handle); [ 747.233801] <Interrupt> [ 747.233801] lock(jbd2_handle); [ 747.233803] *** DEADLOCK *** [ 747.233805] 5 locks held by git/20158: [ 747.233806] #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b [ 747.233811] tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 [ 747.233817] tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b [ 747.233822] armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b [ 747.233827] armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 [ 747.233831] stack backtrace: [ 747.233834] CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 [ 747.233837] ffff8800a56cea40 ffff88010d0a75f8 ffffffff814f446d ffffffff81077036 [ 747.233840] ffffffff823a84b0 ffff88010d0a7638 ffffffff814f3849 0000000000000001 [ 747.233843] 000000000000000a ffff8800a56cf6f8 ffff8800a56cea40 ffffffff810795dd [ 747.233846] Call Trace: [ 747.233849] [<ffffffff814f446d>] dump_stack+0x4c/0x6e [ 747.233852] [<ffffffff81077036>] ? up+0x39/0x3e [ 747.233854] [<ffffffff814f3849>] print_usage_bug.part.23+0x25b/0x26a [ 747.233857] [<ffffffff810795dd>] ? print_shortest_lock_dependencies+0x182/0x182 [ 747.233859] [<ffffffff8107a9c9>] mark_lock+0x384/0x56d [ 747.233862] [<ffffffff8107ac11>] mark_held_locks+0x5f/0x76 [ 747.233865] [<ffffffffa023d2f3>] ? zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233867] [<ffffffff8107d13b>] lockdep_trace_alloc+0xb2/0xb5 [ 747.233870] [<ffffffff8112bac7>] kmem_cache_alloc_trace+0x32/0x1e2 [ 747.233873] [<ffffffffa023d2f3>] zcomp_strm_alloc+0x25/0x73 [zram] [ 747.233876] [<ffffffffa023d428>] zcomp_strm_multi_find+0xe7/0x173 [zram] [ 747.233879] [<ffffffffa023d58b>] zcomp_strm_find+0xc/0xe [zram] [ 747.233881] [<ffffffffa023f292>] zram_bvec_rw+0x2ca/0x7e0 [zram] [ 747.233885] [<ffffffffa023fa8c>] zram_make_request+0x1fa/0x301 [zram] [ 747.233889] [<ffffffff812142f8>] generic_make_request+0x9c/0xdb [ 747.233891] [<ffffffff8121442e>] submit_bio+0xf7/0x120 [ 747.233895] [<ffffffff810f1c0c>] ? __test_set_page_writeback+0x1a0/0x1b8 [ 747.233897] [<ffffffff811a9d00>] ext4_io_submit+0x2e/0x43 [ 747.233899] [<ffffffff811a9efa>] ext4_bio_write_page+0x1b7/0x300 [ 747.233902] [<ffffffff811a2106>] mpage_submit_page+0x60/0x77 [ 747.233905] [<ffffffff811a25b0>] mpage_map_and_submit_buffers+0x10f/0x21d [ 747.233907] [<ffffffff811a6814>] ext4_writepages+0xc8c/0xe1b [ 747.233910] [<ffffffff810f3f77>] do_writepages+0x23/0x2c [ 747.233913] [<ffffffff810ea5d1>] __filemap_fdatawrite_range+0x84/0x8b [ 747.233915] [<ffffffff810ea657>] filemap_flush+0x1c/0x1e [ 747.233917] [<ffffffff811a3851>] ext4_alloc_da_blocks+0xb8/0x117 [ 747.233919] [<ffffffff811af52a>] ext4_rename+0x132/0x6dc [ 747.233921] [<ffffffff8107ac11>] ? mark_held_locks+0x5f/0x76 [ 747.233924] [<ffffffff811afafd>] ext4_rename2+0x29/0x2b [ 747.233926] [<ffffffff811427ea>] vfs_rename+0x540/0x636 [ 747.233928] [<ffffffff81146a01>] SyS_renameat2+0x359/0x44d [ 747.233931] [<ffffffff81146b26>] SyS_rename+0x1e/0x20 [ 747.233933] [<ffffffff814faa17>] entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: hemantbeast <[email protected]>
hemantbeast
pushed a commit
to hemantbeast/xiaomi_armani_kernel
that referenced
this issue
May 6, 2018
(cherry picked from commit 3d5fe03a3ea013060ebba2a811aeb0f23f56aefa) We can end up allocating a new compression stream with GFP_KERNEL from within the IO path, which may result is nested (recursive) IO operations. That can introduce problems if the IO path in question is a reclaimer, holding some locks that will deadlock nested IOs. Allocate streams and working memory using GFP_NOIO flag, forbidding recursive IO and FS operations. An example: inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage. git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes: (jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555 {IN-RECLAIM_FS-W} state was registered at: __lock_acquire+0x8da/0x117b lock_acquire+0x10c/0x1a7 start_this_handle+0x52d/0x555 jbd2__journal_start+0xb4/0x237 __ext4_journal_start_sb+0x108/0x17e ext4_dirty_inode+0x32/0x61 __mark_inode_dirty+0x16b/0x60c iput+0x11e/0x274 __dentry_kill+0x148/0x1b8 shrink_dentry_list+0x274/0x44a prune_dcache_sb+0x4a/0x55 super_cache_scan+0xfc/0x176 shrink_slab.part.14.constprop.25+0x2a2/0x4d3 shrink_zone+0x74/0x140 kswapd+0x6b7/0x930 kthread+0x107/0x10f ret_from_fork+0x3f/0x70 irq event stamp: 138297 hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9 softirqs last disabled at (137813): irq_exit+0x41/0x95 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(jbd2_handle); <Interrupt> lock(jbd2_handle); *** DEADLOCK *** 5 locks held by git/20158: #0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b tarunkapadia93#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3 tarunkapadia93#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b armani-dev#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b armani-dev#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555 stack backtrace: CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211 Call Trace: dump_stack+0x4c/0x6e mark_lock+0x384/0x56d mark_held_locks+0x5f/0x76 lockdep_trace_alloc+0xb2/0xb5 kmem_cache_alloc_trace+0x32/0x1e2 zcomp_strm_alloc+0x25/0x73 [zram] zcomp_strm_multi_find+0xe7/0x173 [zram] zcomp_strm_find+0xc/0xe [zram] zram_bvec_rw+0x2ca/0x7e0 [zram] zram_make_request+0x1fa/0x301 [zram] generic_make_request+0x9c/0xdb submit_bio+0xf7/0x120 ext4_io_submit+0x2e/0x43 ext4_bio_write_page+0x1b7/0x300 mpage_submit_page+0x60/0x77 mpage_map_and_submit_buffers+0x10f/0x21d ext4_writepages+0xc8c/0xe1b do_writepages+0x23/0x2c __filemap_fdatawrite_range+0x84/0x8b filemap_flush+0x1c/0x1e ext4_alloc_da_blocks+0xb8/0x117 ext4_rename+0x132/0x6dc ? mark_held_locks+0x5f/0x76 ext4_rename2+0x29/0x2b vfs_rename+0x540/0x636 SyS_renameat2+0x359/0x44d SyS_rename+0x1e/0x20 entry_SYSCALL_64_fastpath+0x12/0x6f [[email protected]: add stable mark] Signed-off-by: Sergey Senozhatsky <[email protected]> Acked-by: Minchan Kim <[email protected]> Cc: Kyeongdon Kim <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
hi all ! recently i want to run pentesting in my phone,i find i may need to use a wifi adapter that otg to my phone.i can see the device by lsusb ,the dmesg also print something that declare found a wifi adapter ,but in ifconfig there is no more interface that belong to my wifi adapter .so i think it may because the driver is not included ,so i want to build one.
i know i need kernel header,and wifi adapter driver source,i think i can get them both.this repo contains the kernel header .so i wonder if i got the kernel module ,how can i use it? place it to where and so on? thx!
My device is redmi 1s,the wifi adapter is rt5370.thanks anyone who can help.
The text was updated successfully, but these errors were encountered: