-
Notifications
You must be signed in to change notification settings - Fork 250
/
dense.rs
1141 lines (1010 loc) · 38.2 KB
/
dense.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! A dense univariate polynomial represented in coefficient form.
use crate::{
univariate::{DenseOrSparsePolynomial, SparsePolynomial},
DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
};
use ark_ff::{FftField, Field, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
fmt,
ops::{Add, AddAssign, Deref, DerefMut, Div, Mul, Neg, Sub, SubAssign},
rand::Rng,
vec::*,
};
#[cfg(feature = "parallel")]
use ark_std::cmp::max;
#[cfg(feature = "parallel")]
use rayon::prelude::*;
/// Stores a polynomial in coefficient form.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct DensePolynomial<F: Field> {
/// The coefficient of `x^i` is stored at location `i` in `self.coeffs`.
pub coeffs: Vec<F>,
}
impl<F: Field> Polynomial<F> for DensePolynomial<F> {
type Point = F;
/// Returns the total degree of the polynomial
fn degree(&self) -> usize {
if self.is_zero() {
0
} else {
assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));
self.coeffs.len() - 1
}
}
/// Evaluates `self` at the given `point` in `Self::Point`.
fn evaluate(&self, point: &F) -> F {
if self.is_zero() {
return F::zero();
} else if point.is_zero() {
return self.coeffs[0];
}
self.internal_evaluate(point)
}
}
#[cfg(feature = "parallel")]
// Set some minimum number of field elements to be worked on per thread
// to avoid per-thread costs dominating parallel execution time.
const MIN_ELEMENTS_PER_THREAD: usize = 16;
impl<F: Field> DensePolynomial<F> {
#[inline]
// Horner's method for polynomial evaluation
fn horner_evaluate(poly_coeffs: &[F], point: &F) -> F {
poly_coeffs
.iter()
.rfold(F::zero(), move |result, coeff| result * point + coeff)
}
#[cfg(not(feature = "parallel"))]
fn internal_evaluate(&self, point: &F) -> F {
Self::horner_evaluate(&self.coeffs, point)
}
#[cfg(feature = "parallel")]
fn internal_evaluate(&self, point: &F) -> F {
// Horners method - parallel method
// compute the number of threads we will be using.
let num_cpus_available = rayon::current_num_threads();
let num_coeffs = self.coeffs.len();
let num_elem_per_thread = max(num_coeffs / num_cpus_available, MIN_ELEMENTS_PER_THREAD);
// run Horners method on each thread as follows:
// 1) Split up the coefficients across each thread evenly.
// 2) Do polynomial evaluation via horner's method for the thread's coefficients
// 3) Scale the result point^{thread coefficient start index}
// Then obtain the final polynomial evaluation by summing each threads result.
let result = self
.coeffs
.par_chunks(num_elem_per_thread)
.enumerate()
.map(|(i, chunk)| {
let mut thread_result = Self::horner_evaluate(&chunk, point);
thread_result *= point.pow(&[(i * num_elem_per_thread) as u64]);
thread_result
})
.sum();
result
}
}
impl<F: Field> DenseUVPolynomial<F> for DensePolynomial<F> {
/// Constructs a new polynomial from a list of coefficients.
fn from_coefficients_slice(coeffs: &[F]) -> Self {
Self::from_coefficients_vec(coeffs.to_vec())
}
/// Constructs a new polynomial from a list of coefficients.
fn from_coefficients_vec(coeffs: Vec<F>) -> Self {
let mut result = Self { coeffs };
// While there are zeros at the end of the coefficient vector, pop them off.
result.truncate_leading_zeros();
// Check that either the coefficients vec is empty or that the last coeff is
// non-zero.
assert!(result.coeffs.last().map_or(true, |coeff| !coeff.is_zero()));
result
}
/// Returns the coefficients of `self`
fn coeffs(&self) -> &[F] {
&self.coeffs
}
/// Outputs a univariate polynomial of degree `d` where each non-leading
/// coefficient is sampled uniformly at random from `F` and the leading
/// coefficient is sampled uniformly at random from among the non-zero
/// elements of `F`.
///
/// # Example
/// ```
/// use ark_std::test_rng;
/// use ark_test_curves::bls12_381::Fr;
/// use ark_poly::{univariate::DensePolynomial, Polynomial, DenseUVPolynomial};
///
/// let rng = &mut test_rng();
/// let poly = DensePolynomial::<Fr>::rand(8, rng);
/// assert_eq!(poly.degree(), 8);
/// ```
fn rand<R: Rng>(d: usize, rng: &mut R) -> Self {
let mut random_coeffs = Vec::new();
if d > 0 {
// d - 1 overflows when d = 0
for _ in 0..=(d - 1) {
random_coeffs.push(F::rand(rng));
}
}
let mut leading_coefficient = F::rand(rng);
while leading_coefficient.is_zero() {
leading_coefficient = F::rand(rng);
}
random_coeffs.push(leading_coefficient);
Self::from_coefficients_vec(random_coeffs)
}
}
impl<F: FftField> DensePolynomial<F> {
/// Multiply `self` by the vanishing polynomial for the domain `domain`.
/// Returns the result of the multiplication.
pub fn mul_by_vanishing_poly<D: EvaluationDomain<F>>(&self, domain: D) -> DensePolynomial<F> {
let mut shifted = vec![F::zero(); domain.size()];
shifted.extend_from_slice(&self.coeffs);
cfg_iter_mut!(shifted)
.zip(&self.coeffs)
.for_each(|(s, c)| *s -= c);
DensePolynomial::from_coefficients_vec(shifted)
}
/// Divide `self` by the vanishing polynomial for the domain `domain`.
/// Returns the quotient and remainder of the division.
pub fn divide_by_vanishing_poly<D: EvaluationDomain<F>>(
&self,
domain: D,
) -> (DensePolynomial<F>, DensePolynomial<F>) {
let domain_size = domain.size();
if self.coeffs.len() < domain_size {
// If degree(self) < len(Domain), then the quotient is zero, and the entire polynomial is the remainder
(DensePolynomial::<F>::zero(), self.clone())
} else {
// Compute the quotient
//
// If `self.len() <= 2 * domain_size`
// then quotient is simply `self.coeffs[domain_size..]`
// Otherwise
// during the division by `x^domain_size - 1`, some of `self.coeffs[domain_size..]` will be updated as well
// which can be computed using the following algorithm.
//
let mut quotient_vec = self.coeffs[domain_size..].to_vec();
for i in 1..(self.len() / domain_size) {
cfg_iter_mut!(quotient_vec)
.zip(&self.coeffs[domain_size * (i + 1)..])
.for_each(|(s, c)| *s += c);
}
// Compute the remainder
//
// `remainder = self - quotient_vec * (x^domain_size - 1)`
//
// Note that remainder must be smaller than `domain_size`.
// So we can look at only the first `domain_size` terms.
//
// Therefore,
// `remainder = self.coeffs[0..domain_size] - quotient_vec * (-1)`
// i.e.,
// `remainder = self.coeffs[0..domain_size] + quotient_vec`
//
let mut remainder_vec = self.coeffs[0..domain_size].to_vec();
cfg_iter_mut!(remainder_vec)
.zip("ient_vec)
.for_each(|(s, c)| *s += c);
let quotient = DensePolynomial::<F>::from_coefficients_vec(quotient_vec);
let remainder = DensePolynomial::<F>::from_coefficients_vec(remainder_vec);
(quotient, remainder)
}
}
}
impl<F: Field> DensePolynomial<F> {
fn truncate_leading_zeros(&mut self) {
while self.coeffs.last().map_or(false, |c| c.is_zero()) {
self.coeffs.pop();
}
}
/// Perform a naive n^2 multiplication of `self` by `other`.
pub fn naive_mul(&self, other: &Self) -> Self {
if self.is_zero() || other.is_zero() {
DensePolynomial::zero()
} else {
let mut result = vec![F::zero(); self.degree() + other.degree() + 1];
for (i, self_coeff) in self.coeffs.iter().enumerate() {
for (j, other_coeff) in other.coeffs.iter().enumerate() {
result[i + j] += &(*self_coeff * other_coeff);
}
}
DensePolynomial::from_coefficients_vec(result)
}
}
}
impl<F: FftField> DensePolynomial<F> {
/// Evaluate `self` over `domain`.
pub fn evaluate_over_domain_by_ref<D: EvaluationDomain<F>>(
&self,
domain: D,
) -> Evaluations<F, D> {
let poly: DenseOrSparsePolynomial<'_, F> = self.into();
DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
}
/// Evaluate `self` over `domain`.
pub fn evaluate_over_domain<D: EvaluationDomain<F>>(self, domain: D) -> Evaluations<F, D> {
let poly: DenseOrSparsePolynomial<'_, F> = self.into();
DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
}
}
impl<F: Field> fmt::Debug for DensePolynomial<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
for (i, coeff) in self.coeffs.iter().enumerate().filter(|(_, c)| !c.is_zero()) {
if i == 0 {
write!(f, "\n{:?}", coeff)?;
} else if i == 1 {
write!(f, " + \n{:?} * x", coeff)?;
} else {
write!(f, " + \n{:?} * x^{}", coeff, i)?;
}
}
Ok(())
}
}
impl<F: Field> Deref for DensePolynomial<F> {
type Target = [F];
fn deref(&self) -> &[F] {
&self.coeffs
}
}
impl<F: Field> DerefMut for DensePolynomial<F> {
fn deref_mut(&mut self) -> &mut [F] {
&mut self.coeffs
}
}
impl<'a, 'b, F: Field> Add<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
fn add(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
let mut result = if self.is_zero() {
other.clone()
} else if other.is_zero() {
self.clone()
} else if self.degree() >= other.degree() {
let mut result = self.clone();
result
.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| {
*a += b;
});
result
} else {
let mut result = other.clone();
result
.coeffs
.iter_mut()
.zip(&self.coeffs)
.for_each(|(a, b)| {
*a += b;
});
result
};
result.truncate_leading_zeros();
result
}
}
impl<'a, 'b, F: Field> Add<&'a SparsePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn add(self, other: &'a SparsePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() {
other.clone().into()
} else if other.is_zero() {
self.clone()
} else {
let mut result = self.clone();
// If `other` has higher degree than `self`, create a dense vector
// storing the upper coefficients of the addition
let mut upper_coeffs = match other.degree() > result.degree() {
true => vec![F::zero(); other.degree() - result.degree()],
false => Vec::new(),
};
for (pow, coeff) in other.iter() {
if *pow <= result.degree() {
result.coeffs[*pow] += coeff;
} else {
upper_coeffs[*pow - result.degree() - 1] = *coeff;
}
}
result.coeffs.extend(upper_coeffs);
result
}
}
}
impl<'a, F: Field> AddAssign<&'a DensePolynomial<F>> for DensePolynomial<F> {
fn add_assign(&mut self, other: &'a DensePolynomial<F>) {
if self.is_zero() {
self.coeffs.truncate(0);
self.coeffs.extend_from_slice(&other.coeffs);
} else if other.is_zero() {
} else if self.degree() >= other.degree() {
self.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| {
*a += b;
});
} else {
// Add the necessary number of zero coefficients.
self.coeffs.resize(other.coeffs.len(), F::zero());
self.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| {
*a += b;
});
}
self.truncate_leading_zeros();
}
}
impl<'a, F: Field> AddAssign<(F, &'a DensePolynomial<F>)> for DensePolynomial<F> {
fn add_assign(&mut self, (f, other): (F, &'a DensePolynomial<F>)) {
// No need to modify self if other is zero
if other.is_zero() {
return;
}
// If the first polynomial is zero, just copy the second one and scale by f.
if self.is_zero() {
self.coeffs.clear();
self.coeffs.extend_from_slice(&other.coeffs);
self.coeffs.iter_mut().for_each(|c| *c *= &f);
return;
}
// If the degree of the first polynomial is smaller, resize it.
if self.degree() < other.degree() {
self.coeffs.resize(other.coeffs.len(), F::zero());
}
// Add corresponding coefficients from the second polynomial, scaled by f.
self.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| *a += f * b);
// If the leading coefficient ends up being zero, pop it off.
// This can happen:
// - if they were the same degree,
// - if a polynomial's coefficients were constructed with leading zeros.
self.truncate_leading_zeros();
}
}
impl<'a, F: Field> AddAssign<&'a SparsePolynomial<F>> for DensePolynomial<F> {
#[inline]
fn add_assign(&mut self, other: &'a SparsePolynomial<F>) {
if self.is_zero() {
self.coeffs.truncate(0);
self.coeffs.resize(other.degree() + 1, F::zero());
for (i, coeff) in other.iter() {
self.coeffs[*i] = *coeff;
}
} else if other.is_zero() {
} else {
// If `other` has higher degree than `self`, create a dense vector
// storing the upper coefficients of the addition
let mut upper_coeffs = match other.degree() > self.degree() {
true => vec![F::zero(); other.degree() - self.degree()],
false => Vec::new(),
};
for (pow, coeff) in other.iter() {
if *pow <= self.degree() {
self.coeffs[*pow] += coeff;
} else {
upper_coeffs[*pow - self.degree() - 1] = *coeff;
}
}
self.coeffs.extend(upper_coeffs);
}
}
}
impl<F: Field> Neg for DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn neg(mut self) -> DensePolynomial<F> {
self.coeffs.iter_mut().for_each(|coeff| {
*coeff = -*coeff;
});
self
}
}
impl<'a, 'b, F: Field> Sub<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn sub(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
let mut result = if self.is_zero() {
let mut result = other.clone();
result.coeffs.iter_mut().for_each(|c| *c = -(*c));
result
} else if other.is_zero() {
self.clone()
} else if self.degree() >= other.degree() {
let mut result = self.clone();
result
.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| *a -= b);
result
} else {
let mut result = self.clone();
result.coeffs.resize(other.coeffs.len(), F::zero());
result
.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| *a -= b);
result
};
result.truncate_leading_zeros();
result
}
}
impl<'a, 'b, F: Field> Sub<&'a SparsePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn sub(self, other: &'a SparsePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() {
let result = other.clone();
result.neg().into()
} else if other.is_zero() {
self.clone()
} else {
let mut result = self.clone();
// If `other` has higher degree than `self`, create a dense vector
// storing the upper coefficients of the subtraction
let mut upper_coeffs = match other.degree() > result.degree() {
true => vec![F::zero(); other.degree() - result.degree()],
false => Vec::new(),
};
for (pow, coeff) in other.iter() {
if *pow <= result.degree() {
result.coeffs[*pow] -= coeff;
} else {
upper_coeffs[*pow - result.degree() - 1] = -*coeff;
}
}
result.coeffs.extend(upper_coeffs);
result
}
}
}
impl<'a, F: Field> SubAssign<&'a DensePolynomial<F>> for DensePolynomial<F> {
#[inline]
fn sub_assign(&mut self, other: &'a DensePolynomial<F>) {
if self.is_zero() {
self.coeffs.resize(other.coeffs.len(), F::zero());
} else if other.is_zero() {
return;
} else if self.degree() >= other.degree() {
} else {
// Add the necessary number of zero coefficients.
self.coeffs.resize(other.coeffs.len(), F::zero());
}
self.coeffs
.iter_mut()
.zip(&other.coeffs)
.for_each(|(a, b)| {
*a -= b;
});
// If the leading coefficient ends up being zero, pop it off.
// This can happen if they were the same degree, or if other's
// coefficients were constructed with leading zeros.
self.truncate_leading_zeros();
}
}
impl<'a, F: Field> SubAssign<&'a SparsePolynomial<F>> for DensePolynomial<F> {
#[inline]
fn sub_assign(&mut self, other: &'a SparsePolynomial<F>) {
if self.is_zero() {
self.coeffs.truncate(0);
self.coeffs.resize(other.degree() + 1, F::zero());
for (i, coeff) in other.iter() {
self.coeffs[*i] = (*coeff).neg();
}
} else if other.is_zero() {
} else {
// If `other` has higher degree than `self`, create a dense vector
// storing the upper coefficients of the subtraction
let mut upper_coeffs = match other.degree() > self.degree() {
true => vec![F::zero(); other.degree() - self.degree()],
false => Vec::new(),
};
for (pow, coeff) in other.iter() {
if *pow <= self.degree() {
self.coeffs[*pow] -= coeff;
} else {
upper_coeffs[*pow - self.degree() - 1] = -*coeff;
}
}
self.coeffs.extend(upper_coeffs);
}
}
}
impl<'a, 'b, F: Field> Div<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn div(self, divisor: &'a DensePolynomial<F>) -> DensePolynomial<F> {
let a = DenseOrSparsePolynomial::from(self);
let b = DenseOrSparsePolynomial::from(divisor);
a.divide_with_q_and_r(&b).expect("division failed").0
}
}
impl<'b, F: Field> Mul<F> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn mul(self, elem: F) -> DensePolynomial<F> {
if self.is_zero() || elem.is_zero() {
DensePolynomial::zero()
} else {
let mut result = self.clone();
cfg_iter_mut!(result).for_each(|e| {
*e *= elem;
});
result
}
}
}
impl<F: Field> Mul<F> for DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn mul(self, elem: F) -> DensePolynomial<F> {
&self * elem
}
}
/// Performs O(nlogn) multiplication of polynomials if F is smooth.
impl<'a, 'b, F: FftField> Mul<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn mul(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() || other.is_zero() {
DensePolynomial::zero()
} else {
let domain = GeneralEvaluationDomain::new(self.coeffs.len() + other.coeffs.len() - 1)
.expect("field is not smooth enough to construct domain");
let mut self_evals = self.evaluate_over_domain_by_ref(domain);
let other_evals = other.evaluate_over_domain_by_ref(domain);
self_evals *= &other_evals;
self_evals.interpolate()
}
}
}
macro_rules! impl_op {
($trait:ident, $method:ident, $field_bound:ident) => {
impl<F: $field_bound> $trait<DensePolynomial<F>> for DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn $method(self, other: DensePolynomial<F>) -> DensePolynomial<F> {
(&self).$method(&other)
}
}
impl<'a, F: $field_bound> $trait<&'a DensePolynomial<F>> for DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn $method(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
(&self).$method(other)
}
}
impl<'a, F: $field_bound> $trait<DensePolynomial<F>> for &'a DensePolynomial<F> {
type Output = DensePolynomial<F>;
#[inline]
fn $method(self, other: DensePolynomial<F>) -> DensePolynomial<F> {
self.$method(&other)
}
}
};
}
impl<F: Field> Zero for DensePolynomial<F> {
/// Returns the zero polynomial.
fn zero() -> Self {
Self { coeffs: Vec::new() }
}
/// Checks if the given polynomial is zero.
fn is_zero(&self) -> bool {
self.coeffs.is_empty() || self.coeffs.iter().all(|coeff| coeff.is_zero())
}
}
impl_op!(Add, add, Field);
impl_op!(Sub, sub, Field);
impl_op!(Mul, mul, FftField);
impl_op!(Div, div, Field);
#[cfg(test)]
mod tests {
use crate::{polynomial::univariate::*, GeneralEvaluationDomain};
use ark_ff::{Fp64, MontBackend, MontConfig};
use ark_ff::{One, UniformRand};
use ark_std::{rand::Rng, test_rng};
use ark_test_curves::bls12_381::Fr;
fn rand_sparse_poly<R: Rng>(degree: usize, rng: &mut R) -> SparsePolynomial<Fr> {
// Initialize coeffs so that its guaranteed to have a x^{degree} term
let mut coeffs = vec![(degree, Fr::rand(rng))];
for i in 0..degree {
if !rng.gen_bool(0.8) {
coeffs.push((i, Fr::rand(rng)));
}
}
SparsePolynomial::from_coefficients_vec(coeffs)
}
#[test]
fn rand_dense_poly_degree() {
#[derive(MontConfig)]
#[modulus = "5"]
#[generator = "2"]
pub struct F5Config;
let rng = &mut test_rng();
pub type F5 = Fp64<MontBackend<F5Config, 1>>;
// if the leading coefficient were uniformly sampled from all of F, this
// test would fail with high probability ~99.9%
for i in 1..=30 {
assert_eq!(DensePolynomial::<F5>::rand(i, rng).degree(), i);
}
}
#[test]
fn double_polynomials_random() {
let rng = &mut test_rng();
for degree in 0..70 {
let p = DensePolynomial::<Fr>::rand(degree, rng);
let p_double = &p + &p;
let p_quad = &p_double + &p_double;
assert_eq!(&(&(&p + &p) + &p) + &p, p_quad);
}
}
#[test]
fn add_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = DensePolynomial::<Fr>::rand(b_degree, rng);
let res1 = &p1 + &p2;
let res2 = &p2 + &p1;
assert_eq!(res1, res2);
}
}
}
#[test]
fn add_sparse_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = rand_sparse_poly(b_degree, rng);
let res = &p1 + &p2;
assert_eq!(res, &p1 + &Into::<DensePolynomial<Fr>>::into(p2));
}
}
}
#[test]
fn add_assign_sparse_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = rand_sparse_poly(b_degree, rng);
let mut res = p1.clone();
res += &p2;
assert_eq!(res, &p1 + &Into::<DensePolynomial<Fr>>::into(p2));
}
}
}
#[test]
fn add_polynomials_with_mul() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let mut p1 = DensePolynomial::rand(a_degree, rng);
let p2 = DensePolynomial::rand(b_degree, rng);
let f = Fr::rand(rng);
let f_p2 = DensePolynomial::from_coefficients_vec(
p2.coeffs.iter().map(|c| f * c).collect(),
);
let res2 = &f_p2 + &p1;
p1 += (f, &p2);
let res1 = p1;
assert_eq!(res1, res2);
}
}
}
#[test]
fn sub_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = DensePolynomial::<Fr>::rand(b_degree, rng);
let res1 = &p1 - &p2;
let res2 = &p2 - &p1;
assert_eq!(&res1 + &p2, p1);
assert_eq!(res1, -res2);
}
}
}
#[test]
fn sub_sparse_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = rand_sparse_poly(b_degree, rng);
let res = &p1 - &p2;
assert_eq!(res, &p1 - &Into::<DensePolynomial<Fr>>::into(p2));
}
}
}
#[test]
fn sub_assign_sparse_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
let p2 = rand_sparse_poly(b_degree, rng);
let mut res = p1.clone();
res -= &p2;
assert_eq!(res, &p1 - &Into::<DensePolynomial<Fr>>::into(p2));
}
}
}
#[test]
fn polynomial_additive_identity() {
// Test adding polynomials with its negative equals 0
let mut rng = test_rng();
for degree in 0..70 {
let poly = DensePolynomial::<Fr>::rand(degree, &mut rng);
let neg = -poly.clone();
let result = poly + neg;
assert!(result.is_zero());
assert_eq!(result.degree(), 0);
// Test with SubAssign trait
let poly = DensePolynomial::<Fr>::rand(degree, &mut rng);
let mut result = poly.clone();
result -= &poly;
assert!(result.is_zero());
assert_eq!(result.degree(), 0);
}
}
#[test]
fn divide_polynomials_fixed() {
let dividend = DensePolynomial::from_coefficients_slice(&[
"4".parse().unwrap(),
"8".parse().unwrap(),
"5".parse().unwrap(),
"1".parse().unwrap(),
]);
let divisor = DensePolynomial::from_coefficients_slice(&[Fr::one(), Fr::one()]); // Construct a monic linear polynomial.
let result = ÷nd / &divisor;
let expected_result = DensePolynomial::from_coefficients_slice(&[
"4".parse().unwrap(),
"4".parse().unwrap(),
"1".parse().unwrap(),
]);
assert_eq!(expected_result, result);
}
#[test]
fn divide_polynomials_random() {
let rng = &mut test_rng();
for a_degree in 0..50 {
for b_degree in 0..50 {
let dividend = DensePolynomial::<Fr>::rand(a_degree, rng);
let divisor = DensePolynomial::<Fr>::rand(b_degree, rng);
if let Some((quotient, remainder)) = DenseOrSparsePolynomial::divide_with_q_and_r(
&(÷nd).into(),
&(&divisor).into(),
) {
assert_eq!(dividend, &(&divisor * "ient) + &remainder)
}
}
}
}
#[test]
fn evaluate_polynomials() {
let rng = &mut test_rng();
for a_degree in 0..70 {
let p = DensePolynomial::rand(a_degree, rng);
let point: Fr = Fr::rand(rng);
let mut total = Fr::zero();
for (i, coeff) in p.coeffs.iter().enumerate() {
total += &(point.pow(&[i as u64]) * coeff);
}
assert_eq!(p.evaluate(&point), total);
}
}
#[test]
fn mul_random_element() {
let rng = &mut test_rng();
for degree in 0..70 {
let a = DensePolynomial::<Fr>::rand(degree, rng);
let e = Fr::rand(rng);
assert_eq!(
&a * e,
a.naive_mul(&DensePolynomial::from_coefficients_slice(&[e]))
)
}
}
#[test]
fn mul_polynomials_random() {
let rng = &mut test_rng();
for a_degree in 0..70 {
for b_degree in 0..70 {
let a = DensePolynomial::<Fr>::rand(a_degree, rng);
let b = DensePolynomial::<Fr>::rand(b_degree, rng);
assert_eq!(&a * &b, a.naive_mul(&b))
}
}
}
#[test]
fn mul_by_vanishing_poly() {
let rng = &mut test_rng();
for size in 1..10 {
let domain = GeneralEvaluationDomain::new(1 << size).unwrap();
for degree in 0..70 {
let p = DensePolynomial::<Fr>::rand(degree, rng);
let ans1 = p.mul_by_vanishing_poly(domain);
let ans2 = &p * &domain.vanishing_polynomial().into();
assert_eq!(ans1, ans2);
}
}
}
#[test]
fn divide_by_vanishing_poly() {
let rng = &mut test_rng();
for size in 1..10 {
let domain = GeneralEvaluationDomain::new(1 << size).unwrap();
for degree in 0..12 {
let p = DensePolynomial::<Fr>::rand(degree * 100, rng);
let (quotient, remainder) = p.divide_by_vanishing_poly(domain);
let p_recovered = quotient.mul_by_vanishing_poly(domain) + remainder;
assert_eq!(p, p_recovered);
}
}
}
#[test]
fn test_leading_zero() {
let n = 10;
let rand_poly = DensePolynomial::rand(n, &mut test_rng());
let coefficients = rand_poly.coeffs.clone();
let leading_coefficient: Fr = coefficients[n];
let negative_leading_coefficient = -leading_coefficient;
let inverse_leading_coefficient = leading_coefficient.inverse().unwrap();
let mut inverse_coefficients = coefficients.clone();
inverse_coefficients[n] = inverse_leading_coefficient;
let mut negative_coefficients = coefficients;
negative_coefficients[n] = negative_leading_coefficient;
let negative_poly = DensePolynomial::from_coefficients_vec(negative_coefficients);
let inverse_poly = DensePolynomial::from_coefficients_vec(inverse_coefficients);
let x = &inverse_poly * &rand_poly;
assert_eq!(x.degree(), 2 * n);
assert!(!x.coeffs.last().unwrap().is_zero());
let y = &negative_poly + &rand_poly;
assert_eq!(y.degree(), n - 1);
assert!(!y.coeffs.last().unwrap().is_zero());
}
#[test]
fn evaluate_over_domain_test() {
let rng = &mut ark_std::test_rng();
let domain = crate::domain::Radix2EvaluationDomain::<Fr>::new(1 << 10).unwrap();
let offset = Fr::GENERATOR;
let coset = domain.get_coset(offset).unwrap();
for _ in 0..100 {
let poly = DensePolynomial::<Fr>::rand(1 << 11, rng);
let evaluations = domain
.elements()
.map(|e| poly.evaluate(&e))
.collect::<Vec<_>>();
assert_eq!(evaluations, poly.evaluate_over_domain_by_ref(domain).evals);
let evaluations = coset
.elements()
.map(|e| poly.evaluate(&e))
.collect::<Vec<_>>();
assert_eq!(evaluations, poly.evaluate_over_domain(coset).evals);
}
let zero = DensePolynomial::zero();