-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
74 lines (55 loc) · 2.37 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torchaudio
from torchaudio.io import StreamReader
from torchaudio.io import StreamWriter
from train import InterpolationModel, seq_len
import tqdm
bs = 256 if torch.cuda.is_available() else 8
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
model = torch.load("model.pt", map_location=device, weights_only=False)
model = torch.compile(model)
model.eval()
waveform, sample_rate = torchaudio.load("music/downsampled.wav")
num_channels, num_frames = waveform.shape
#new_waveform = [[], []]
#new_waveform[0] = tuple(waveform[0][::4])
#new_waveform[1] = tuple(waveform[1][::4])
#waveform = torch.tensor(new_waveform)
#del new_waveform
#num_frames = num_frames // 4
waveform = waveform.to(device)
#ws = StreamWriter("out.wav")
#ws.add_audio_stream(sample_rate*2, num_channels)
out = [[] for _ in range(num_channels)]
print("Interpolating...")
with torch.no_grad():
frame_count = 0
processQueue = []
for i in tqdm.tqdm(range(len(waveform[0]))):
if i < seq_len:
padding = torch.zeros(seq_len - i - 1, device=device)
seq = []
for channel in range(num_channels):
tensor = torch.cat((padding, waveform[channel][0 : i + 1]))
seq.append((tensor, channel))
else:
# Get previous seq_len frames
seq = [((waveform[channel][i - seq_len + 1 : i + 1]), channel) for channel in range(num_channels)]
processQueue.extend(seq)
if len(processQueue) == bs or len(waveform[0]) - 1 == i:
preds = model(torch.stack(list(x[0] for x in processQueue)))[0].cpu()
for i, sequence in enumerate(processQueue):
out[sequence[1]].append(sequence[0][-2])
out[sequence[1]].append(preds[i])
#frame_count += len(chunk[0]) // num_channels
#f.write_audio_chunk(0, torch.tensor(chunk))
#out.extend(chunk)
processQueue = []
frame_count = len(out[0])
print(f"Number of frames in input: {num_frames}")
print(f"Number of frames in output: {frame_count}")
# Calculate new sample rate ratio
ratio = 2
upsampled_sample_rate = sample_rate * ratio
print(f"{sample_rate} Hz -> {upsampled_sample_rate} Hz ({ratio}x)")
torchaudio.save('out.wav', torch.tensor(out), sample_rate=int(upsampled_sample_rate))