-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
52 lines (39 loc) · 1.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from tensorflow.keras.models import Sequential
from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D
from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
from PIL import Image
def gen_labels():
train = 'Data/Train'
train_generator = ImageDataGenerator(rescale = 1/255)
train_generator = train_generator.flow_from_directory(train,
target_size = (300,300),
batch_size = 32,
class_mode = 'sparse')
labels = (train_generator.class_indices)
labels = dict((v,k) for k,v in labels.items())
return labels
def preprocess(image):
image = np.array(image.resize((300, 300), Image.ANTIALIAS))
image = np.array(image, dtype='uint8')
image = np.array(image)/255.0
return image
def model_arc():
model=Sequential()
#Convolution blocks
model.add(Conv2D(32, kernel_size = (3,3), padding='same',input_shape=(300,300,3),activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(64, kernel_size = (3,3), padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(32, kernel_size = (3,3), padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
#Classification layers
model.add(Flatten())
model.add(Dense(64,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(6,activation='softmax'))
return model