forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sol1.py
129 lines (103 loc) · 4.11 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
The following undirected network consists of seven vertices and twelve edges
with a total weight of 243.

The same network can be represented by the matrix below.
A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -
However, it is possible to optimise the network by removing some edges and still
ensure that all points on the network remain connected. The network which achieves
the maximum saving is shown below. It has a weight of 93, representing a saving of
243 - 93 = 150 from the original network.
Using network.txt (right click and 'Save Link/Target As...'), a 6K text file
containing a network with forty vertices, and given in matrix form, find the maximum
saving which can be achieved by removing redundant edges whilst ensuring that the
network remains connected.
Solution:
We use Prim's algorithm to find a Minimum Spanning Tree.
Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm
"""
from __future__ import annotations
import os
from collections.abc import Mapping
EdgeT = tuple[int, int]
class Graph:
"""
A class representing an undirected weighted graph.
"""
def __init__(self, vertices: set[int], edges: Mapping[EdgeT, int]) -> None:
self.vertices: set[int] = vertices
self.edges: dict[EdgeT, int] = {
(min(edge), max(edge)): weight for edge, weight in edges.items()
}
def add_edge(self, edge: EdgeT, weight: int) -> None:
"""
Add a new edge to the graph.
>>> graph = Graph({1, 2}, {(2, 1): 4})
>>> graph.add_edge((3, 1), 5)
>>> sorted(graph.vertices)
[1, 2, 3]
>>> sorted([(v,k) for k,v in graph.edges.items()])
[(4, (1, 2)), (5, (1, 3))]
"""
self.vertices.add(edge[0])
self.vertices.add(edge[1])
self.edges[(min(edge), max(edge))] = weight
def prims_algorithm(self) -> Graph:
"""
Run Prim's algorithm to find the minimum spanning tree.
Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm
>>> graph = Graph({1,2,3,4},{(1,2):5, (1,3):10, (1,4):20, (2,4):30, (3,4):1})
>>> mst = graph.prims_algorithm()
>>> sorted(mst.vertices)
[1, 2, 3, 4]
>>> sorted(mst.edges)
[(1, 2), (1, 3), (3, 4)]
"""
subgraph: Graph = Graph({min(self.vertices)}, {})
min_edge: EdgeT
min_weight: int
edge: EdgeT
weight: int
while len(subgraph.vertices) < len(self.vertices):
min_weight = max(self.edges.values()) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
min_edge = edge
min_weight = weight
subgraph.add_edge(min_edge, min_weight)
return subgraph
def solution(filename: str = "p107_network.txt") -> int:
"""
Find the maximum saving which can be achieved by removing redundant edges
whilst ensuring that the network remains connected.
>>> solution("test_network.txt")
150
"""
script_dir: str = os.path.abspath(os.path.dirname(__file__))
network_file: str = os.path.join(script_dir, filename)
edges: dict[EdgeT, int] = {}
data: list[str]
edge1: int
edge2: int
with open(network_file) as f:
data = f.read().strip().split("\n")
adjaceny_matrix = [line.split(",") for line in data]
for edge1 in range(1, len(adjaceny_matrix)):
for edge2 in range(edge1):
if adjaceny_matrix[edge1][edge2] != "-":
edges[(edge2, edge1)] = int(adjaceny_matrix[edge1][edge2])
graph: Graph = Graph(set(range(len(adjaceny_matrix))), edges)
subgraph: Graph = graph.prims_algorithm()
initial_total: int = sum(graph.edges.values())
optimal_total: int = sum(subgraph.edges.values())
return initial_total - optimal_total
if __name__ == "__main__":
print(f"{solution() = }")