forked from DirkvdH/Online-Appendix-MetaGrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLipschitzGrad.py
387 lines (326 loc) · 13.5 KB
/
LipschitzGrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import numpy as np
import copy as cp
import domains as dommi
import scipy.sparse.linalg
#%%
class MetaGradL:
# TODO: pass the baseslave _type_ instead of an instance
def __init__(self, domain, slave, outcome = "last"):
self.domain = domain
self.baseslave = slave
self.B = 0.
self.dimension = domain.dimension
self.Awake = np.array([])
self.slaves = np.array([])
self.center = np.repeat(0.0, self.dimension)
self.lowersum = 0.
self.G = 0.
self.masterp = np.array([])
self.outcome = outcome
self.w = self.center
self.Bstart = 0.
self.Brestart = 0.
self.factor = 0.
def getname(self):
return("MGL" + self.baseslave.shortname)
def getetas(self):
if len(self.slaves) > 0:
return(np.array([slave.geteta() for slave in self.slaves]))
else:
return(np.array([]))
def getijs(self):
return(np.array([slave.geti() for slave in self.slaves]))
def getweights(self):
return(self.w)
def predict(self, x = 0):
ijs = self.getijs() # pronounce as i's
# first we kill the old slaves
if len(ijs) > 0:
index = ijs <= -np.log2(2 * self.B)
self.slaves = self.slaves[index]
self.masterp = self.masterp[index]
if self.B == 0:
oldgrid = []
else:
oldgrid = np.arange(np.ceil(-np.log2(2 * (self.lowersum + self.B))), np.floor(-np.log2(2 * self.B)) + 1)
oldgrid = np.flip(oldgrid)
# now we create the new slaves
indexnewslaves = np.invert(np.isin(oldgrid, ijs))
for i in range(len(oldgrid)):
if indexnewslaves[i]:
newslave = cp.deepcopy(self.baseslave)
newslave.initialize(oldgrid[i], self.domain)
self.slaves = np.append(self.slaves, newslave)
self.masterp = np.append(self.masterp, 1.0)
if len(self.slaves) == 0:
self.w = self.center
return(self.center)
else:
pred = self.center
norm = 0.0
for i in range(len(self.slaves)):
slave = self.slaves[i]
if self.domain.name == 'LACeL':
pred = pred + slave.geteta() * slave.predict(x) * self.masterp[i]
else:
pred = pred + slave.geteta() * slave.w * self.masterp[i]
norm = norm + slave.geteta() * self.masterp[i]
self.w = pred/norm
return(self.w)
def LACeLupdate(self, datarow):
if self.outcome == "last":
xt = datarow[0:-1]
if self.outcome == "first":
xt = datarow[1:]
if self.outcome == "none":
xt = datarow
self.predict(xt)
self.xlast = xt
def update(self, gradient):
if self.B == 0:
oldgrid = []
else:
oldgrid = np.arange(np.ceil(-np.log2(2 * (self.lowersum + self.B))), np.floor(-np.log2(2 * self.B)) + 1)
oldgrid = np.flip(oldgrid)
if self.domain.name == 'LACeL':
G = 0
# this is dangerous if there is no intercept!
for i in range(len(self.xlast)):
if self.xlast[i] != 0:
G = np.abs(gradient[i]/self.xlast[i])
break
self.G = np.max([G, self.G])
b = self.domain.C * G + np.abs(np.inner(self.w, gradient))
Bt = np.max([b, self.B])
if Bt == 0:
self.factor = 0
else:
self.factor = self.B/Bt
self.lowersum = self.lowersum + np.min([b, self.B])
self.B = np.max([self.B, Bt])
else:
G = np.sqrt(np.dot(gradient, gradient))
self.G = np.max([self.G, G])
b = 2 * self.domain.radius * G
Bt = np.max([b, self.B])
if Bt == 0:
self.factor = 0
else:
self.factor = self.B/Bt
self.lowersum = self.lowersum + np.min([b, self.B])
self.B = np.max([self.B, Bt])
if self.B == 0:
return(None)
surloss = []
clipgrad = self.factor * gradient
for i in range(len(oldgrid)):
iregeta = self.slaves[i].geteta() * np.dot(self.w - self.slaves[i].w, clipgrad).flatten()
assert abs(iregeta) <= 1/2, "impending prod bound violation"
surloss = np.append(surloss, - iregeta + iregeta ** 2)
self.slaves[i].update(self.w, gradient)
Cbefore = 0.0
Cafter = 0.0
if len(oldgrid) > 0:
Cbefore = np.sum(self.masterp)
m = np.min(surloss)
self.masterp = self.masterp * np.exp(-surloss + m)
Cafter = np.sum(self.masterp)
self.masterp = self.masterp * Cbefore / Cafter
self.Brestart = self.Brestart + b/Bt
if self.Bstart == 0:
restart = True
else:
restart = Bt/self.Bstart > self.Brestart
if restart:
self.masterp = np.repeat(1.0, len(oldgrid))
self.Bstart = Bt
if self.domain.name != "LACeL":
self.predict()
#%%
class FullSlave:
def __init__(self, D = "usedomainradius"):
self.alpha = 1
self.name = "FullSlave"
self.shortname = "Full"
self.D = D
def initialize(self, i, domain):
self.i = i
self.domain = domain
self.eta = 2.0**i
if self.D == "usedomainradius":
self.D = domain.radius
if domain.dimension == 1:
self.D = 1/3 * self.D # undo scaling by 3
self.H = np.diag(np.repeat(np.float64(self.D**2), self.domain.dimension))
self.w = domain.center(1).flatten()
self.inverse = np.diag(np.repeat(np.float64(self.D**2), self.domain.dimension))
def geteta(self):
return(self.eta)
def geti(self):
return(self.i)
def update(self, masterw, gradient):
notM = np.dot(gradient, self.w - masterw)
shiftgrad = (self.eta + 2*self.eta**2*notM)*gradient
ghat = np.sqrt(2) * self.eta * gradient
q = np.dot(self.H, ghat)
self.H = self.H - np.outer(q, q)/(1 + np.dot(q, ghat))
wtilde = self.w - np.matmul(self.H, shiftgrad)
if not self.domain.name == 'LACeL' and self.domain.dimension > 1:
M = np.outer(gradient, gradient)
self.inverse = self.inverse + 2 * self.eta**2 * M
if not self.domain.testdomain(wtilde):
if self.domain.dimension == 1:
iH = 1/self.H
else:
iH = self.inverse
self.w = self.domain.project(wtilde, iH).reshape(self.domain.dimension)
else:
self.w = wtilde
def predict(self, x):
if self.domain.testdomainpred(self.w, x):
return(self.w)
else:
self.w = self.domain.futureproject(self.w, self.H, x)
return(self.w)
#%%
class FrequentSlave:
def __init__(self, rank, D = "usedomainradius"):
self.alpha = 1
self.name = "FrequentSlave" + str(rank)
self.shortname = "F" + str(rank)
self.rank = rank
self.D = D
def initialize(self, i, domain):
self.i = i
self.domain = domain
self.eta = 2.0**i
if self.D == "usedomainradius":
self.D = domain.radius
self.H = np.diag(np.repeat(np.float64(self.D**2), 2*self.rank))
self.H2 = np.zeros((self.rank, self.rank))
self.w = domain.center(1).flatten()
self.S = np.zeros((2*self.rank, self.domain.dimension))
# S[self.rank+tau-1:2*self.rank, :] is all zero
self.hessian = np.diag(np.repeat(np.float64(self.D**2), self.domain.dimension))
self.tau = 0
def geteta(self):
return(self.eta)
def geti(self):
return(self.i)
def update(self, masterw, gradient):
notM = np.dot(gradient, self.w - masterw)
shiftgrad = (self.eta + 2*self.eta**2*notM)*gradient
ghat = np.sqrt(2) * self.eta * gradient
assert(np.all(self.S[self.rank+self.tau-1, :] == 0))
self.S[self.rank+self.tau-1, :] = ghat
if self.tau < self.rank:
etau = np.zeros(2 * self.rank)
etau[self.rank + self.tau - 1] = 1.0
q = np.dot(self.S, ghat) - np.dot(ghat, ghat)/2 * etau
# BONUS: write the below update to H in obviously symmetric form
Hq = np.dot(self.H, q)
eH = np.dot(etau, self.H)
self.H = self.H - np.outer(Hq, eH)/(1.0 + np.dot(eH, q))
He = np.matmul(self.H, etau)
qH = np.matmul(q, self.H)
self.H = self.H - np.outer(He, qH)/(1.0 + np.dot(qH, etau))
self.tau = self.tau + 1
else:
if self.S.shape[1] > self.rank:
[u,s,vt] = scipy.sparse.linalg.svds(self.S, self.rank, which='LM',return_singular_vectors='vh')
ix = np.flip(np.argsort(s))
U2 = s[ix]**2
V = vt[ix,:]
else:
# scipy.linalg.sparse.svds, cannot handle the case that you ask for
# the maximum # of possible singular values.
[L, U, V] = np.linalg.svd(self.S, full_matrices=False)
U2 = U[:self.rank]**2 # truncate by hand
V = V[:self.rank,:] # truncate by hand
if len(U2) < self.rank:
# dimension is less than rank, so padd U2 and V with zeros
# (Since we keep the top rank-1 eigenvalues, it is reasonable
# to set rank = dimension + 1, so this CAN happen.)
V = np.append(V, np.zeros((self.rank-len(U2),V.shape[1])),axis=0)
U2 = np.append(U2, np.zeros(self.rank-len(U2)))
self.S[:self.rank,:] = np.matmul(np.diag(np.sqrt(U2 - U2[self.rank - 1])), V)
self.S[self.rank:,:] = 0
self.H = np.diag(1/np.append(1/(self.D**2) + (U2 - U2[self.rank-1]), np.repeat(1/self.D**2, self.rank)))
self.tau = 0
SHS = np.matmul(np.matmul(self.S.transpose(), self.H), self.S)
self.hessian = self.D**2*(np.diag(np.repeat(1, self.domain.dimension)) - SHS)
wtilde = self.w - np.matmul(self.hessian, shiftgrad)
if not self.domain.testdomain(wtilde):
iH = self.iH0 + np.matmul(self.S.transpose(), self.S)
self.w = self.domain.project(wtilde, iH).reshape(self.domain.dimension)
else:
self.w = wtilde
def predict(self, x):
if self.domain.testdomainpred(self.w, x):
return(self.w)
else:
self.w = self.domain.futureproject(self.w, self.hessian, x)
return(self.w)
#%%
class DiagGradL:
def __init__(self, domain, outcome = "last", D = "usedomainradius"):
self.domain = domain
baseslave = FullSlave(D)
DiagDom = dommi.LinfBall(domain.radius, 1, diagonal = True)
baseMG = MetaGradL(domain = DiagDom, slave = baseslave)
self.dimMGs = [cp.deepcopy(baseMG) for i in range(domain.dimension)]
self.dimension = domain.dimension
self.outcome = outcome
self.center = np.repeat(0.0, self.dimension)
self.w = self.center
self.LACeLw = self.center
self.insideLACeL = True
def getname(self):
return("MGLDiag")
def getweights(self):
if self.domain.name == "LACeL":
return(self.LACeLw)
return(self.w)
def predict(self, x = [0]):
w = np.array([])
if len(x) < self.dimension:
x = self.center
if self.domain.name == "LACeL":
self.LACeLupdate(x, "none")
return(self.LACeLw)
else:
w = np.array([dimMG.predict([0]) for dimMG in self.dimMGs])
self.w = w
return(self.w)
def LACeLupdate(self, datarow):
if self.outcome == "last":
xt = datarow[0:-1]
if self.outcome == "first":
xt = datarow[1:]
if self.outcome == "none":
xt = datarow
w = np.array([dimMG.predict([0]) for dimMG in self.dimMGs])
self.w = w
self.insideLACeL = self.domain.testdomainpred(self.w, xt)
if not self.insideLACeL:
self.LACeLw = self.domain.futureproject(self.w, np.diag(np.repeat(1, self.dimension)), xt)
else:
self.LACeLw = self.w
def update(self, gradient):
if self.domain.name == 'LACeL':
if not self.insideLACeL:
gnorm = np.sqrt(np.inner(gradient, gradient))
dif = self.w - self.LACeLw
wnorm = np.sqrt(np.inner(dif, dif))
addgrad = gnorm * dif/wnorm
for i in range(self.dimension):
gradi = 0.5 * gradient[i] + 0.5 * addgrad[i]
self.dimMGs[i].update(gradi)
else:
for i in range(self.dimension):
self.dimMGs[i].update(0.5 * gradient[i])
else:
for i in range(self.dimension):
self.dimMGs[i].update(gradient[i])
if self.domain.name != "LACeL":
self.predict()