Skip to content

Latest commit

 

History

History
110 lines (53 loc) · 7.33 KB

references.md

File metadata and controls

110 lines (53 loc) · 7.33 KB

References

This reference list is not exhaustive (and it might change through time). It contains as much as possible OA (review) papers. The emphasis is on comparative processes, and most sources quoted in the talks.

General impact cratering references

Books

French, B. M. (1998) Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures (No. LPI-Contrib-954). https://www.lpi.usra.edu/publications/books/CB-954/CB-954.intro.html

Melosh, H. J. (1989). Impact cratering: A geologic process. New York: Oxford University Press; Oxford: Clarendon Press, Chicago

Osinski, G. R., & Pierazzo, E., eds. (2013) Impact cratering: Processes and products, DOI:10.1002/9781118447307 - https://onlinelibrary.wiley.com/doi/book/10.1002/9781118447307

Review/research articles / Book chapters

Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural geology of impact craters. Journal of Structural Geology, 62, 156-182. https://doi.org/10.1016/j.jsg.2014.01.015

Kenkmann, T., & Wulf, G. (2018) Impact cratering. Planetary Geology, 123-145. https://doi.org/10.1007/978-3-319-65179-8_7

Pierazzo, E., & Melosh, H. J. (2000) Understanding oblique impacts from experiments, observations, and modeling. Annual Review of Earth and Planetary Sciences, 28(1), 141-167. https://doi.org/10.1146/annurev.earth.28.1.141

Terrestrial impact cratering

Books

Gottwald, M., Kenkmann, T., Reimold. W. U. (2020) Terrestrial Impact Structures: The TanDEM-X Atlas, Dr. Friedrich Pfeil Verlag, ISBN: 978­-3-­89937­-261­-8.

Review/research articles / Book chapters

French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth-Science Reviews, 98(1-2), 123-170. https://doi.org/10.1016/j.earscirev.2009.10.009

Grieve, R. A. (1990) Impact cratering on the Earth. Scientific American, 262(4), 66-73. https://www.jstor.org/stable/24996714

Kenkmann, T. (2021) The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteoritics & Planetary Science, 56(5), 1024-1070. https://doi.org/10.1111/maps.13657

Reimold, W. U., & Koeberl, C. (2014) Impact structures in Africa: A review. Journal of African Earth Sciences, 93, 57-175. https://doi.org/10.1016/j.jafrearsci.2014.01.008

Schmieder, M., & Kring, D. A. (2020) Earth's impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology, 20(1), 91-141. https://doi.org/10.1089/ast.2019.2085

Stöffler, D., Hamann, C., & Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53(1), 5-49. https://doi.org/10.1111/maps.12912

Planetary chronology

Fassett, C. I. (2016). Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system. Journal of Geophysical Research: Planets, 121(10), 1900-1926. https://doi.org/10.1002/2016JE005094

Michael, G. G., & Neukum, G. (2010) Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth and Planetary Science Letters, 294(3-4), 223-229. https://doi.org/10.1016/j.epsl.2009.12.041

Robbins, S. J., et al. (2018) Revised recommended methods for analyzing crater size‐frequency distributions. Meteoritics & Planetary Science, 53(4), 891-931.

Williams, J. P., van der Bogert, C. H., Pathare, A. V., Michael, G. G., Kirchoff, M. R., & Hiesinger, H. (2018). Dating very young planetary surfaces from crater statistics: A review of issues and challenges. Meteoritics & Planetary Science, 53(4), 554-582. https://doi.org/10.1111/maps.12924

Xie, M., & Xiao, Z. (2023) A new chronology from debiased crater densities: Implications for the origin and evolution of lunar impactors. Earth and Planetary Science Letters, 602, 117963. https://doi.org/10.1016/j.epsl.2022.117963

See also https://github.com/ggmichael/craterstats#references

the Moon

Robbins, S. J. (2019) A new global database of lunar impact craters> 1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. Journal of Geophysical Research: Planets, 124(4), 871-892. https://doi.org/10.1029/2018JE005592

See also https://github.com/europlanet-gmap/winter-school-2023/tree/main/moon#references

Mercury

Barnouin, O. S., et al. (2012) The morphology of craters on Mercury: Results from MESSENGER flybys. Icarus, 219(1), 414-427. https://doi.org/10.1016/j.icarus.2012.02.029

Venus

Basilevsky, A. T., & Head, J. W. (2003) The surface of Venus. Reports on Progress in Physics, 66(10), 1699. https://doi.org/10.1088/0034-4885/66/10/R04

Bondarenko, N. V., & Head, J. W. (2009)Crater‐associated dark diffuse features on Venus: Properties of surficial deposits and their evolution. Journal of Geophysical Research: Planets, 114(E3). https://doi.org/10.1029/2008JE003163

Phillips, R. J., et al. (1992) Impact craters and Venus resurfacing history. Journal of Geophysical Research: Planets, 97(E10), 15923-15948. https://doi.org/10.1029/92JE01696

Riedel, C., Michael, G. G., Orgel, C., Baum, C., van der Bogert, C. H., & Hiesinger, H. (2021) Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships. Journal of Geophysical Research: Planets, 126(3), e2020JE006693. - https://doi.org/10.1029/2020JE006693 - https://data.mendeley.com/datasets/mn2b542k5r/2

Mars

Barlow, N. G. (2010). What we know about Mars from its impact craters. GSA Bulletin, 122(5-6), 644-657. https://doi.org/10.1130/B30182.1

Mouginis-Mark, P. J., & Boyce, J. M. (2012). Tooting crater: Geology and geomorphology of the archetype large, fresh, impact crater on Mars. Geochemistry, 72(1), 1-23. https://doi.org/10.1016/j.chemer.2011.12.001

Putzig, N. E., et al. (2018). Three-dimensional radar imaging of structures and craters in the Martian polar caps. Icarus, 308, 138-147. https://doi.org/10.1016/j.icarus.2017.09.023

Robbins, S. J., & Hynek, B. M. (2014). The secondary crater population of Mars. Earth and Planetary Science Letters, 400, 66-76. https://doi.org/10.1016/j.epsl.2014.05.005

Asteroids / Dwarf Planets

Gou, S., Yue, Z., Di, K., & Liu, Z. (2018) A global catalogue of Ceres impact craters≥ 1 km and preliminary analysis. Icarus, 302, 296-307. https://doi.org/10.1016/j.icarus.2017.11.028

Hiesinger, H., et al. (2016) Cratering on Ceres: Implications for its crust and evolution. Science, 353(6303), aaf4759. https://doi.org/10.1126/science.aaf4759

Jupyter system satellites

Schenk, P. M. (2002) Thickness constraints on the icy shells of the Galilean satellites from a comparison of crater shapes. Nature, 417(6887), 419-421. https://doi.org/10.1038/417419a

Schenk, P. M., Chapman, C. R., Zahnle, K., & Moore, J. M. (2004). Ages and interiors: The cratering record of the Galilean satellites. Jupiter: The planet, satellites and magnetosphere, 2, 427.

Saturn system satellites

Bland, M. T., et al. (2012) Enceladus' extreme heat flux as revealed by its relaxed craters. Geophysical Research Letters, 39(17). https://doi.org/10.1029/2012GL052736

Hedgepeth, J. E., et al. (2020) Titan's impact crater population after Cassini. Icarus, 344, 113664. https://doi.org/10.1016/j.icarus.2020.113664