-
Notifications
You must be signed in to change notification settings - Fork 2
/
example-queries.js
58 lines (58 loc) · 1.92 KB
/
example-queries.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
exports.example_queries = [
{
'showcase':
{
'tags': ['proof', 'infinite series'],
'content': 'Show that [imath]\\sum_{k=1}^\\infty \\dfrac{\\sin k^2} k[/imath] converges.'
},
'keywords': 'prove, $\\sum_{k=1}^\\infty \\dfrac{\\sin k^2} k$, convergence'
},
{
'showcase':
{
'tags': ['convergence-divergence'],
'content': 'Find whether [imath]\\sum\\limits_{n=1}^{\\infty} a^{1+\\frac1{2}+\\frac1{3}+\\dots+\\frac1{n}}[/imath] converges or not.'
},
'keywords': '$\\sum\\limits_{n=1}^{\\infty} a^{1+\\frac1{2}+\\frac1{3}+\\dots+\\frac1{n}}$, converges or not?'
},
{
'showcase':
{
'tags': ['limits', 'calculus'],
'content': 'What is this limit: [imath]\\lim_{n \\to \\infty} (1 + \\dfrac 1 n)^n[/imath] ?'
},
'keywords': 'limit, $\\lim_{n \\to \\infty} (1 + \\dfrac 1 n)^n$'
},
{
'showcase':
{
'tags': ['general-relativity'],
'content': 'What is this equation: [imath]H^2=\\frac{8\\pi G}{3}\\rho+\\frac{kc^2}{a^2}[/imath]'
},
'keywords': 'equation, $H^2=\\frac{8\\pi G}{3}\\rho+\\frac{kc^2}{a^2}$'
},
{
'showcase':
{
'tags': ['polyhedra', 'analytic-geometry'],
'content': 'Derive Euler\'s Formula for polyhedron: [imath]F-E+V=2[/imath]'
},
'keywords': '$F-E+V=2$, polyhedron'
},
{
'showcase':
{
'tags': ['inequality'],
'content': 'Find a tight constant lowerbound for [imath](xy+yz+xz)\\left(\\frac{1}{(x+y)^2}+\\frac{1}{(y+z)^2}+\\frac{1}{(x+z)^2}\\right)[/imath]'
},
'keywords': '$(xy+yz+xz)\\left(\\frac{1}{(x+y)^2}+\\frac{1}{(y+z)^2}+\\frac{1}{(x+z)^2}\\right)$'
},
{
'showcase':
{
'tags': ['calculus', 'asymptotics'],
'content': 'Prove Stirling\'s approximation [imath]n!\\sim \\sqrt {2\\pi n}(\\frac ne)^n[/imath]'
},
'keywords': 'proof, $n!\\sim \\sqrt {2\\pi n}(\\frac ne)^n$'
}
]