- TOC {:toc}
Kompose has support for two providers: OpenShift and Kubernetes.
You can choose a targeted provider using global option --provider
. If no provider is specified, Kubernetes is set by default.
Kompose supports conversion of V1, V2, and V3 Docker Compose files into Kubernetes and OpenShift objects.
$ kompose --file docker-voting.yml convert
WARN Unsupported key networks - ignoring
WARN Unsupported key build - ignoring
INFO Kubernetes file "worker-svc.yaml" created
INFO Kubernetes file "db-svc.yaml" created
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "result-svc.yaml" created
INFO Kubernetes file "vote-svc.yaml" created
INFO Kubernetes file "redis-deployment.yaml" created
INFO Kubernetes file "result-deployment.yaml" created
INFO Kubernetes file "vote-deployment.yaml" created
INFO Kubernetes file "worker-deployment.yaml" created
INFO Kubernetes file "db-deployment.yaml" created
$ ls
db-deployment.yaml docker-compose.yml docker-gitlab.yml redis-deployment.yaml result-deployment.yaml vote-deployment.yaml worker-deployment.yaml
db-svc.yaml docker-voting.yml redis-svc.yaml result-svc.yaml vote-svc.yaml worker-svc.yaml
You can also provide multiple docker-compose files at the same time:
$ kompose -f docker-compose.yml -f docker-guestbook.yml convert
INFO Kubernetes file "frontend-service.yaml" created
INFO Kubernetes file "mlbparks-service.yaml" created
INFO Kubernetes file "mongodb-service.yaml" created
INFO Kubernetes file "redis-master-service.yaml" created
INFO Kubernetes file "redis-node-service.yaml" created
INFO Kubernetes file "frontend-deployment.yaml" created
INFO Kubernetes file "mlbparks-deployment.yaml" created
INFO Kubernetes file "mongodb-deployment.yaml" created
INFO Kubernetes file "mongodb-claim0-persistentvolumeclaim.yaml" created
INFO Kubernetes file "redis-master-deployment.yaml" created
INFO Kubernetes file "redis-node-deployment.yaml" created
$ ls
mlbparks-deployment.yaml mongodb-service.yaml redis-node-service.jsonmlbparks-service.yaml
frontend-deployment.yaml mongodb-claim0-persistentvolumeclaim.yaml redis-master-service.yaml
frontend-service.yaml mongodb-deployment.yaml redis-node-deployment.yaml
redis-master-deployment.yaml
When multiple docker-compose files are provided the configuration is merged. Any configuration that is common will be over ridden by subsequent file.
$ kompose --provider openshift --file docker-voting.yml convert
WARN [worker] Service cannot be created because of missing port.
INFO OpenShift file "vote-service.yaml" created
INFO OpenShift file "db-service.yaml" created
INFO OpenShift file "redis-service.yaml" created
INFO OpenShift file "result-service.yaml" created
INFO OpenShift file "vote-deploymentconfig.yaml" created
INFO OpenShift file "vote-imagestream.yaml" created
INFO OpenShift file "worker-deploymentconfig.yaml" created
INFO OpenShift file "worker-imagestream.yaml" created
INFO OpenShift file "db-deploymentconfig.yaml" created
INFO OpenShift file "db-imagestream.yaml" created
INFO OpenShift file "redis-deploymentconfig.yaml" created
INFO OpenShift file "redis-imagestream.yaml" created
INFO OpenShift file "result-deploymentconfig.yaml" created
INFO OpenShift file "result-imagestream.yaml" created
It also supports creating buildconfig for build directive in a service. By default, it uses the remote repo for the current git branch as the source repo, and the current branch as the source branch for the build. You can specify a different source repo and branch using --build-repo
and --build-branch
options respectively.
$ kompose --provider openshift --file buildconfig/docker-compose.yml convert
WARN [foo] Service cannot be created because of missing port.
INFO OpenShift Buildconfig using [email protected]:rtnpro/kompose.git::master as source.
INFO OpenShift file "foo-deploymentconfig.yaml" created
INFO OpenShift file "foo-imagestream.yaml" created
INFO OpenShift file "foo-buildconfig.yaml" created
Note: If you are manually pushing the Openshift artifacts using oc create -f
, you need to ensure that you push the imagestream artifact before the buildconfig artifact, to workaround this Openshift issue: openshift/origin#4518 .
Kompose supports a straightforward way to deploy your "composed" application to Kubernetes or OpenShift via kompose up
.
$ kompose --file ./examples/docker-guestbook.yml up
We are going to create Kubernetes deployments and services for your Dockerized application.
If you need different kind of resources, use the 'kompose convert' and 'kubectl create -f' commands instead.
INFO Successfully created service: redis-master
INFO Successfully created service: redis-node
INFO Successfully created service: frontend
INFO Successfully created deployment: redis-master
INFO Successfully created deployment: redis-node
INFO Successfully created deployment: frontend
Your application has been deployed to Kubernetes. You can run 'kubectl get deployment,svc,pods' for details.
$ kubectl get deployment,svc,pods
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/frontend 1 1 1 1 4m
deploy/redis-master 1 1 1 1 4m
deploy/redis-node 1 1 1 1 4m
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/frontend 10.0.174.12 <none> 80/TCP 4m
svc/kubernetes 10.0.0.1 <none> 443/TCP 13d
svc/redis-master 10.0.202.43 <none> 6379/TCP 4m
svc/redis-node 10.0.1.85 <none> 6379/TCP 4m
NAME READY STATUS RESTARTS AGE
po/frontend-2768218532-cs5t5 1/1 Running 0 4m
po/redis-master-1432129712-63jn8 1/1 Running 0 4m
po/redis-node-2504961300-nve7b 1/1 Running 0 4m
Note:
- You must have a running Kubernetes cluster with a pre-configured kubectl context.
- Only deployments and services are generated and deployed to Kubernetes. If you need different kind of resources, use the 'kompose convert' and 'kubectl create -f' commands instead.
$ kompose --file ./examples/docker-guestbook.yml --provider openshift up
We are going to create OpenShift DeploymentConfigs and Services for your Dockerized application.
If you need different kind of resources, use the 'kompose convert' and 'oc create -f' commands instead.
INFO Successfully created service: redis-node
INFO Successfully created service: frontend
INFO Successfully created service: redis-master
INFO Successfully created deployment: redis-node
INFO Successfully created ImageStream: redis-node
INFO Successfully created deployment: frontend
INFO Successfully created ImageStream: frontend
INFO Successfully created deployment: redis-master
INFO Successfully created ImageStream: redis-master
Your application has been deployed to OpenShift. You can run 'oc get dc,svc,is' for details.
$ oc get dc,svc,is
NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/frontend 0 1 0 config,image(frontend:v4)
dc/redis-master 0 1 0 config,image(redis-master:e2e)
dc/redis-node 0 1 0 config,image(redis-node:v1)
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/frontend 172.30.46.64 <none> 80/TCP 8s
svc/redis-master 172.30.144.56 <none> 6379/TCP 8s
svc/redis-node 172.30.75.245 <none> 6379/TCP 8s
NAME DOCKER REPO TAGS UPDATED
is/frontend 172.30.12.200:5000/fff/frontend
is/redis-master 172.30.12.200:5000/fff/redis-master
is/redis-node 172.30.12.200:5000/fff/redis-node v1
Note:
- You must have a running OpenShift cluster with a pre-configured
oc
context (oc login
)
Once you have deployed "composed" application to Kubernetes, $ kompose down
will help you to take the application out by deleting its deployments and services. If you need to remove other resources, use the 'kubectl' command.
$ kompose --file docker-guestbook.yml down
INFO Successfully deleted service: redis-master
INFO Successfully deleted deployment: redis-master
INFO Successfully deleted service: redis-node
INFO Successfully deleted deployment: redis-node
INFO Successfully deleted service: frontend
INFO Successfully deleted deployment: frontend
Note:
- You must have a running Kubernetes cluster with a pre-configured kubectl context.
Kompose supports both building and pushing Docker images. When using the build
key within your Docker Compose file, your image will:
- Automatically be built with Docker using the
image
key specified within your file - Be pushed to the correct Docker repository using local credentials (located at
.docker/config
)
Using an example Docker Compose file:
version: "2"
services:
foo:
build: "./build"
image: docker.io/foo/bar
Using kompose up
with a build
key:
$ kompose up
INFO Build key detected. Attempting to build and push image 'docker.io/foo/bar'
INFO Building image 'docker.io/foo/bar' from directory 'build'
INFO Image 'docker.io/foo/bar' from directory 'build' built successfully
INFO Pushing image 'foo/bar:latest' to registry 'docker.io'
INFO Attempting authentication credentials 'https://index.docker.io/v1/
INFO Successfully pushed image 'foo/bar:latest' to registry 'docker.io'
INFO We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims for your Dockerized application. If you need different kind of resources, use the 'kompose convert' and 'kubectl create -f' commands instead.
INFO Deploying application in "default" namespace
INFO Successfully created Service: foo
INFO Successfully created Deployment: foo
Your application has been deployed to Kubernetes. You can run 'kubectl get deployment,svc,pods,pvc' for details.
In order to disable the functionality, or choose to use BuildConfig generation (with OpenShift) --build (local|build-config|none)
can be passed.
# Disable building/pushing Docker images
$ kompose up --build none
# Generate Build Config artifacts for OpenShift
$ kompose up --provider openshift --build build-config
The default kompose
transformation will generate Kubernetes Deployments and Services, in yaml format. You have alternative option to generate json with -j
. Also, you can alternatively generate Replication Controllers objects, Daemon Sets, or Helm charts.
$ kompose convert -j
INFO Kubernetes file "redis-svc.json" created
INFO Kubernetes file "web-svc.json" created
INFO Kubernetes file "redis-deployment.json" created
INFO Kubernetes file "web-deployment.json" created
The *-deployment.json
files contain the Deployment objects.
$ kompose convert --controller replicationController
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-replicationcontroller.yaml" created
INFO Kubernetes file "web-replicationcontroller.yaml" created
The *-replicationcontroller.yaml
files contain the Replication Controller objects. If you want to specify replicas (default is 1), use --replicas
flag: $ kompose convert --controller replicationController --replicas 3
$ kompose convert --controller daemonSet
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-daemonset.yaml" created
INFO Kubernetes file "web-daemonset.yaml" created
The *-daemonset.yaml
files contain the Daemon Set objects
If you want to generate a Chart to be used with Helm simply do:
$ kompose convert -c
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-deployment.yaml" created
INFO Kubernetes file "redis-deployment.yaml" created
chart created in "./docker-compose/"
$ tree docker-compose/
docker-compose
├── Chart.yaml
├── README.md
└── templates
├── redis-deployment.yaml
├── redis-svc.yaml
├── web-deployment.yaml
└── web-svc.yaml
The chart structure is aimed at providing a skeleton for building your Helm charts.
kompose
supports Kompose-specific labels within the docker-compose.yml
file to
explicitly define the generated resources' behavior upon conversion, like Service, PersistentVolumeClaim...
The currently supported options are:
Key | Value |
---|---|
kompose.service.type | nodeport / clusterip / loadbalancer / headless |
kompose.service.expose | true / hostnames (separated by comma) |
kompose.service.expose.tls-secret | secret name |
kompose.volume.size | kubernetes supported volume size |
kompose.controller.type | deployment / daemonset / replicationcontroller |
kompose.image-pull-policy | kubernetes pods imagePullPolicy |
kompose.image-pull-secret | kubernetes secret name for imagePullSecrets |
Note: kompose.service.type
label should be defined with ports
only (except for headless service), otherwise kompose
will fail.
kompose.service.type
defines the type of service to be created.
For example:
version: "2"
services:
nginx:
image: nginx
dockerfile: foobar
build: ./foobar
cap_add:
- ALL
container_name: foobar
labels:
kompose.service.type: nodeport
kompose.service.expose
defines if the service needs to be made accessible from outside the cluster or not. If the value is set to "true", the provider sets the endpoint automatically, and for any other value, the value is set as the hostname. If multiple ports are defined in a service, the first one is chosen to be the exposed.- For the Kubernetes provider, an ingress resource is created and it is assumed that an ingress controller has already been configured. If the value is set to a comma sepatated list, multiple hostnames are supported.
- For the OpenShift provider, a route is created.
kompose.service.expose.tls-secret
provides the name of the TLS secret to use with the Kubernetes ingress controller. This requires kompose.service.expose to be set.
For example:
version: "2"
services:
web:
image: tuna/docker-counter23
ports:
- "5000:5000"
links:
- redis
labels:
kompose.service.expose: "counter.example.com,foobar.example.com"
kompose.service.expose.tls-secret: "example-secret"
redis:
image: redis:3.0
ports:
- "6379"
kompose.image-pull-secret
defines a kubernetes secret name for imagePullSecrets podspec field. This secret will be used for pulling private images. For example:
version: '2'
services:
tm-service:
image: premium/private-image
labels:
kompose.image-pull-secret: "example-kubernetes-secret"
kompose.volume.size
defines the requests storage's size in the PersistentVolumeClaim
For example:
version: '2'
services:
db:
image: postgres:10.1
labels:
kompose.volume.size: 1Gi
volumes:
- db-data:/var/lib/postgresql/data
kompose.controller.type
defines which controller type should convert for this service
For example:
web:
image: wordpress:4.5
ports:
- '80'
environment:
WORDPRESS_AUTH_KEY: changeme
WORDPRESS_SECURE_AUTH_KEY: changeme
WORDPRESS_LOGGED_IN_KEY: changeme
WORDPRESS_NONCE_KEY: changeme
WORDPRESS_AUTH_SALT: changeme
WORDPRESS_SECURE_AUTH_SALT: changeme
WORDPRESS_LOGGED_IN_SALT: changeme
WORDPRESS_NONCE_SALT: changeme
WORDPRESS_NONCE_AA: changeme
restart: always
links:
- 'db:mysql'
db:
image: mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: password
restart: always
labels:
project.logs: /var/log/mysql
kompose.controller.type: daemonset
Service web
will be converted to Deployment
as default, service db
will be converted to DaemonSet
because of kompose.controller.type
label.
kompose.image-pull-policy
defines Kubernetes PodSpec imagePullPolicy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
For example:
version: '2'
services:
example-service:
image: example-image
labels:
kompose.image-pull-policy: "Never"
If you want to create normal pods without controller you can use restart
construct of docker-compose to define that. Follow table below to see what happens on the restart
value.
docker-compose restart |
object created | Pod restartPolicy |
---|---|---|
"" |
controller object | Always |
always |
controller object | Always |
unless-stopped |
controller object | Always |
on-failure |
Pod | OnFailure |
no |
Pod | Never |
Note: controller object could be deployment
or replicationcontroller
, etc.
For e.g. pival
service will become pod down here. This container calculated value of pi
.
version: '2'
services:
pival:
image: perl
command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
restart: "on-failure"
If the Docker Compose file has a volume specified for a service, the Deployment (Kubernetes) or DeploymentConfig (OpenShift) strategy is changed to "Recreate" instead of "RollingUpdate" (default). This is done to avoid multiple instances of a service from accessing a volume at the same time.
If the Docker Compose file has service name with _
or .
in it (eg.web_service
or web.service
), then it will be replaced by -
and the service name will be renamed accordingly (eg.web-service
). Kompose does this because "Kubernetes" doesn't allow _
in object name.
Please note that changing service name might break some docker-compose
files.
Kompose supports Docker Compose versions: 1, 2 and 3. We have limited support on versions 2.1 and 3.2 due to their experimental nature.
A full list on compatibility between all three versions is listed in our conversion document including a list of all incompatible Docker Compose keys.