-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathrenderer.py
145 lines (112 loc) · 6.01 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch,os,imageio,sys
from tqdm.auto import tqdm
from dataLoader.ray_utils import get_rays
from models.tensoRF import TensorVM, TensorCP, raw2alpha, TensorVMSplit, AlphaGridMask
from utils import *
from dataLoader.ray_utils import ndc_rays_blender
def OctreeRender_trilinear_fast(rays, tensorf, chunk=4096, N_samples=-1, ndc_ray=False, white_bg=True, is_train=False, device='cuda'):
rgbs, alphas, depth_maps, weights, uncertainties = [], [], [], [], []
N_rays_all = rays.shape[0]
for chunk_idx in range(N_rays_all // chunk + int(N_rays_all % chunk > 0)):
rays_chunk = rays[chunk_idx * chunk:(chunk_idx + 1) * chunk].to(device)
rgb_map, depth_map = tensorf(rays_chunk, is_train=is_train, white_bg=white_bg, ndc_ray=ndc_ray, N_samples=N_samples)
rgbs.append(rgb_map)
depth_maps.append(depth_map)
return torch.cat(rgbs), None, torch.cat(depth_maps), None, None
@torch.no_grad()
def evaluation(test_dataset,tensorf, args, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps, depth_maps = [], [], []
ssims,l_alex,l_vgg=[],[],[]
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
img_eval_interval = 1 if N_vis < 0 else max(test_dataset.all_rays.shape[0] // N_vis,1)
idxs = list(range(0, test_dataset.all_rays.shape[0], img_eval_interval))
for idx, samples in tqdm(enumerate(test_dataset.all_rays[0::img_eval_interval]), file=sys.stdout):
W, H = test_dataset.img_wh
rays = samples.view(-1,samples.shape[-1])
rgb_map, _, depth_map, _, _ = renderer(rays, tensorf, chunk=4096, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
if len(test_dataset.all_rgbs):
gt_rgb = test_dataset.all_rgbs[idxs[idx]].view(H, W, 3)
loss = torch.mean((rgb_map - gt_rgb) ** 2)
PSNRs.append(-10.0 * np.log(loss.item()) / np.log(10.0))
if compute_extra_metrics:
ssim = rgb_ssim(rgb_map, gt_rgb, 1)
l_a = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'alex', tensorf.device)
l_v = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'vgg', tensorf.device)
ssims.append(ssim)
l_alex.append(l_a)
l_vgg.append(l_v)
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
# rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=10)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=10)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs
@torch.no_grad()
def evaluation_path(test_dataset,tensorf, c2ws, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps, depth_maps = [], [], []
ssims,l_alex,l_vgg=[],[],[]
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
for idx, c2w in tqdm(enumerate(c2ws)):
W, H = test_dataset.img_wh
c2w = torch.FloatTensor(c2w)
rays_o, rays_d = get_rays(test_dataset.directions, c2w) # both (h*w, 3)
if ndc_ray:
rays_o, rays_d = ndc_rays_blender(H, W, test_dataset.focal[0], 1.0, rays_o, rays_d)
rays = torch.cat([rays_o, rays_d], 1) # (h*w, 6)
rgb_map, _, depth_map, _, _ = renderer(rays, tensorf, chunk=8192, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
# rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=8)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=8)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs