Skip to content
Lianmin Zheng edited this page Aug 29, 2018 · 24 revisions

Content

ARM CPU

NVIDIA GPU

Mobile GPU

ARM CPU

Note: If a board has big.LITTLE architecture, we will use all big cores. Otherwise, we will use all cores. In the following device specifications, we only list the cores being used. We use dtype=float32 and batch_size=1 for the following benchmark.

  • Firefly-RK3399 : 2 x Cortex A73 1.8Ghz
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1      48.87 ms            (1.07 ms)
mobilenet            77.86 ms            (0.09 ms)
resnet-18            162.55 ms           (0.14 ms)
vgg-16               912.44 ms           (0.32 ms)
  • Raspberry Pi 3B : 4 x Cortex A53 1.2Ghz
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1      92.34 ms            (0.07 ms)
mobilenet            124.34 ms           (0.11 ms)
resnet-18            325.06 ms           (0.23 ms)
vgg-16               crashed due to out of memeory
  • Huawei P20 Pro / Mate10 Pro (Soc: HiSilicon Kirin 970) : (4 x Cortex A73 2.36GHz)
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
-------------------------------------------------
squeezenet v1.1      27.53 ms            (1.14 ms)
mobilenet            42.53 ms            (0.31 ms)
resnet-18            76.74 ms            (0.18 ms)
vgg-16               479.84 ms           (0.92 ms)
  • Google Pixel 2 (Soc: Qualcomm Snapdragon 835) : (4 × Kyro 2.35 GHz)
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1      23.57 ms            (0.42 ms)
mobilenet            38.86 ms            (0.11 ms)
resnet-18            63.95 ms            (0.03 ms)
vgg-16               407.75 ms           (9.57 ms)
  • PYNQ (2 x Cortex-A9 650MHz)
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1      452.40 ms           (0.09 ms)
mobilenet            772.16 ms           (0.25 ms)
resnet-18            1243.49 ms          (0.67 ms)
vgg-16               crashed due to out of memeory

NVIDIA GPU

dtype=float32 and batch_size=1

  • NVIDIA 1080 Ti
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
resnet-50            2.69 ms             (0.04 ms)
mobilenet            0.62 ms             (0.00 ms)
vgg-19               4.56 ms             (0.01 ms)
inception_v3         5.75 ms             (0.00 ms)
  • NVIDIA Titan X
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
resnet-50            4.34 ms             (0.03 ms)
mobilenet            0.98 ms             (0.00 ms)
vgg-19               7.38 ms             (0.00 ms)
inception_v3         9.65 ms             (0.04 ms)

Mobile GPU

dtype=float32 and batch_size=1

  • Mali T860 MP4
--------------------------------------------------
Network Name         Mean Inference Time (std dev)
--------------------------------------------------
squeezenet_v1.1      58.78 ms            (1.05 ms)
mobilenet            78.39 ms            (1.33 ms)
resnet-18            125.77 ms           (3.07 ms)
vgg-16               676.56 ms           (4.66 ms)

Reproduce

see readme page here https://github.com/dmlc/tvm/tree/master/apps/benchmark on how to get these numbers

Clone this wiki locally