-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Benchmark
Lianmin Zheng edited this page Jul 26, 2018
·
24 revisions
Note: If a board has big.LITTLE archtiecture, we will use all big cores. Otherwise, we will use all cores. In the following device specifications, we only list the cores being used.
- Firefly-RK3399 : 2 x Cortex A73 1.8Ghz
$ python3 arm_cpu_imagenet_bench.py --device rk3399 --rpc-key rk3399
--------------------------------------------------
Network Name Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1 44.15 ms (0.64 ms)
mobilenet 82.23 ms (0.67 ms)
resnet-18 168.71 ms (0.05 ms)
vgg-16 972.03 ms (1.75 ms)
- Raspberry Pi 3B : 4 x Cortex A53 1.2Ghz
$ python3 arm_cpu_imagenet_bench.py --device rasp3b --rpc-key rasp3b
--------------------------------------------------
Network Name Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1 94.59 ms (0.04 ms)
mobilenet 148.82 ms (0.18 ms)
resnet-18 347.30 ms (0.25 ms)
vgg-16 crashed due to out of memeory
- Huawei P20 Pro / Mate10 Pro (Soc: HiSilicon Kirin 970) : (4 x Cortex A73 2.36GHz)
$ python3 arm_cpu_imagenet_bench.py --device p20pro --rpc-key p20pro
--------------------------------------------------
Network Name Mean Inference Time (std dev)
-------------------------------------------------
squeezenet v1.1 29.33 ms (0.61 ms)
mobilenet 47.47 ms (0.65 ms)
resnet-18 84.71 ms (0.32 ms)
vgg-16 574.62 ms (2.14 ms)
- Google Pixel 2 (Soc: Qualcomm Snapdragon 835) : (4 × Kyro 2.35 GHz)
$ python3 arm_cpu_imagenet_bench.py --device pixel2 --rpc-key pixel2
--------------------------------------------------
Network Name Mean Inference Time (std dev)
--------------------------------------------------
squeezenet v1.1 27.74 ms (0.41 ms)
mobilenet 42.05 ms (0.08 ms)
resnet-18 67.28 ms (0.05 ms)
vgg-16 427.75 ms (8.58 ms)
see readme page here https://github.com/dmlc/tvm/tree/master/apps/benchmark on how to get these numbers