-
Notifications
You must be signed in to change notification settings - Fork 62
/
mnist_eval.py
178 lines (140 loc) · 7.01 KB
/
mnist_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Author: Anurag Ranjan
# Copyright (c) 2019, Anurag Ranjan
# All rights reserved.
import argparse
import time
import csv
import datetime
import os
from tqdm import tqdm
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.utils.data
import torchvision
import torch.nn.functional as F
from logger import TermLogger, AverageMeter
from path import Path
from itertools import chain
from tensorboardX import SummaryWriter
from utils import tensor2array, save_checkpoint
parser = argparse.ArgumentParser(description='MNIST and SVHN training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('-b', '--batch-size', default=100, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--pretrained-alice', dest='pretrained_alice', default=None, metavar='PATH',
help='path to pre-trained alice model')
parser.add_argument('--pretrained-bob', dest='pretrained_bob', default=None, metavar='PATH',
help='path to pre-trained bob model')
parser.add_argument('--pretrained-mod', dest='pretrained_mod', default=None, metavar='PATH',
help='path to pre-trained moderator')
class LeNet(nn.Module):
def __init__(self, nout=10):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 40, 3, 1)
self.conv2 = nn.Conv2d(40, 40, 3, 1)
self.fc1 = nn.Linear(40*5*5, 40)
self.fc2 = nn.Linear(40, nout)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 40*5*5)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def name(self):
return "LeNet"
def main():
global args
args = parser.parse_args()
args.data = Path(args.data)
print("=> fetching dataset")
mnist_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
valset_mnist = torchvision.datasets.MNIST(args.data/'mnist', train=False, transform=mnist_transform, target_transform=None, download=True)
svhn_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(size=(28,28)),
torchvision.transforms.Grayscale(),
torchvision.transforms.ToTensor()])
valset_svhn = torchvision.datasets.SVHN(args.data/'svhn', split='test', transform=svhn_transform, target_transform=None, download=True)
val_set = torch.utils.data.ConcatDataset([valset_mnist, valset_svhn])
print('{} Test samples found in MNIST'.format(len(valset_mnist)))
print('{} Test samples found in SVHN'.format(len(valset_svhn)))
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
val_loader_mnist = torch.utils.data.DataLoader(
valset_mnist, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
val_loader_svhn = torch.utils.data.DataLoader(
valset_svhn, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
# create model
print("=> creating model")
alice_net = LeNet()
bob_net = LeNet()
mod_net = LeNet(nout=1)
print("=> using pre-trained weights from {}".format(args.pretrained_alice))
weights = torch.load(args.pretrained_alice)
alice_net.load_state_dict(weights['state_dict'])
print("=> using pre-trained weights from {}".format(args.pretrained_bob))
weights = torch.load(args.pretrained_bob)
bob_net.load_state_dict(weights['state_dict'])
print("=> using pre-trained weights from {}".format(args.pretrained_mod))
weights = torch.load(args.pretrained_mod)
mod_net.load_state_dict(weights['state_dict'])
cudnn.benchmark = True
alice_net = alice_net.cuda()
bob_net = bob_net.cuda()
mod_net = mod_net.cuda()
# evaluate on validation set
errors_mnist, error_names_mnist, mod_count_mnist = validate(val_loader_mnist, alice_net, bob_net, mod_net)
errors_svhn, error_names_svhn, mod_count_svhn = validate(val_loader_svhn, alice_net, bob_net, mod_net)
errors_total, error_names_total, _ = validate(val_loader, alice_net, bob_net, mod_net)
accuracy_string_mnist = ', '.join('{} : {:.3f}'.format(name, 100*(error)) for name, error in zip(error_names_mnist, errors_mnist))
accuracy_string_svhn = ', '.join('{} : {:.3f}'.format(name, 100*(error)) for name, error in zip(error_names_svhn, errors_svhn))
accuracy_string_total = ', '.join('{} : {:.3f}'.format(name, 100*(error)) for name, error in zip(error_names_total, errors_total))
print("MNIST Error")
print(accuracy_string_mnist)
print("MNIST Picking Percentage- Alice {:.3f}, Bob {:.3f}".format(mod_count_mnist[0]*100, (1-mod_count_mnist[0])*100))
print("SVHN Error")
print(accuracy_string_svhn)
print("SVHN Picking Percentage for Alice {:.3f}, Bob {:.3f}".format(mod_count_svhn[0]*100, (1-mod_count_svhn[0])*100))
print("TOTAL Error")
print(accuracy_string_total)
def validate(val_loader, alice_net, bob_net, mod_net):
global args
accuracy = AverageMeter(i=3, precision=4)
mod_count = AverageMeter()
# switch to evaluate mode
alice_net.eval()
bob_net.eval()
mod_net.eval()
for i, (img, target) in enumerate(tqdm(val_loader)):
img_var = Variable(img.cuda(), volatile=True)
target_var = Variable(target.cuda(), volatile=True)
pred_alice = alice_net(img_var)
pred_bob = bob_net(img_var)
pred_mod = F.sigmoid(mod_net(img_var))
_ , pred_alice_label = torch.max(pred_alice.data, 1)
_ , pred_bob_label = torch.max(pred_bob.data, 1)
pred_label = (pred_mod.squeeze().data > 0.5).type_as(pred_alice_label) * pred_alice_label + (pred_mod.squeeze().data <= 0.5).type_as(pred_bob_label) * pred_bob_label
total_accuracy = (pred_label.cpu() == target).sum().item() / img.size(0)
alice_accuracy = (pred_alice_label.cpu() == target).sum().item() / img.size(0)
bob_accuracy = (pred_bob_label.cpu() == target).sum().item() / img.size(0)
accuracy.update([total_accuracy, alice_accuracy, bob_accuracy])
mod_count.update((pred_mod.cpu().data > 0.5).sum().item() / img.size(0))
return list(map(lambda x: 1-x, accuracy.avg)), ['Total', 'alice', 'bob'] , mod_count.avg
if __name__ == '__main__':
# import sys
# with open("experiment_recorder.md", "a") as f:
# f.write('\n python3 ' + ' '.join(sys.argv))
main()