-
Notifications
You must be signed in to change notification settings - Fork 62
/
mnist.py
471 lines (369 loc) · 19.6 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Author: Anurag Ranjan
# Copyright (c) 2019, Anurag Ranjan
# All rights reserved.
import argparse
import time
import csv
import datetime
import os
import shutil
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.utils.data
import torchvision
import torch.nn.functional as F
from logger import TermLogger, AverageMeter
from path import Path
from itertools import chain
from tensorboardX import SummaryWriter
from utils import tensor2array
parser = argparse.ArgumentParser(description='MNIST and SVHN training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--dataset', dest='dataset', type=str, default='both',
help='mnist|svhn|both')
parser.add_argument('--DEBUG', action='store_true', help='DEBUG Mode')
parser.add_argument('--name', dest='name', type=str, default='demo', required=True,
help='name of the experiment, checpoints are stored in checpoints/name')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=100, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('--pretrained-alice', dest='pretrained_alice', default=None, metavar='PATH',
help='path to pre-trained alice model')
parser.add_argument('--pretrained-bob', dest='pretrained_bob', default=None, metavar='PATH',
help='path to pre-trained bob model')
parser.add_argument('--pretrained-mod', dest='pretrained_mod', default=None, metavar='PATH',
help='path to pre-trained moderator')
parser.add_argument('--fix-alice', dest='fix_alice', action='store_true', help='do not train alicenet')
parser.add_argument('--fix-bob', dest='fix_bob', action='store_true', help='do not train bobnet')
parser.add_argument('--fix-mod', dest='fix_mod', action='store_true', help='do not train moderator')
parser.add_argument('--wr', default=1., type=float, help='moderator regularization weight')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs and warped imgs at validation step')
parser.add_argument('--log-terminal', action='store_true', help='will display progressbar at terminal')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('-f', '--training-output-freq', type=int, help='frequence for outputting dispnet outputs and warped imgs at training for all scales if 0 will not output',
metavar='N', default=0)
best_error = -1
n_iter = 0
class LeNet(nn.Module):
def __init__(self, nout=10):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 40, 3, 1)
self.conv2 = nn.Conv2d(40, 40, 3, 1)
self.fc1 = nn.Linear(40*5*5, 40)
self.fc2 = nn.Linear(40, nout)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 40*5*5)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def name(self):
return "LeNet"
def mod_regularization_loss(pred_mod):
var_loss = torch.abs(F.sigmoid(pred_mod).var() - 0.25)
return F.relu(var_loss-0.05)
def collaboration_loss(pred_mod, loss_alice, loss_bob):
pseudo_label = (loss_alice < loss_bob).type_as(pred_mod)
pseudo_label = Variable(pseudo_label.data).cuda()
return F.binary_cross_entropy_with_logits(pred_mod.squeeze(), pseudo_label)
def init_weights(m):
if type(m) == nn.Linear:
torch.nn.init.normal(m.weight, mean=0, std=1)
m.bias.data.fill_(0.01)
def save_alice_bob_mod(save_path, alice_state, bob_state, mod_state, is_best, filename='checkpoint.pth.tar'):
file_prefixes = ['alice', 'bob', 'mod']
states = [alice_state, bob_state, mod_state]
for (prefix, state) in zip(file_prefixes, states):
torch.save(state, save_path/'{}_{}'.format(prefix,filename))
if is_best:
for prefix in file_prefixes:
shutil.copyfile(save_path/'{}_{}'.format(prefix,filename), save_path/'{}_model_best.pth.tar'.format(prefix))
def main():
global args, best_error, n_iter
args = parser.parse_args()
save_path = Path(args.name)
args.data = Path(args.data)
args.save_path = 'checkpoints'/save_path #/timestamp
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
torch.manual_seed(args.seed)
training_writer = SummaryWriter(args.save_path)
output_writer= SummaryWriter(args.save_path/'valid')
print("=> fetching dataset")
mnist_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
trainset_mnist = torchvision.datasets.MNIST(args.data/'mnist', train=True, transform=mnist_transform, target_transform=None, download=True)
valset_mnist = torchvision.datasets.MNIST(args.data/'mnist', train=False, transform=mnist_transform, target_transform=None, download=True)
svhn_transform = torchvision.transforms.Compose([torchvision.transforms.Resize(size=(28,28)),
torchvision.transforms.Grayscale(),
torchvision.transforms.ToTensor()])
trainset_svhn = torchvision.datasets.SVHN(args.data/'svhn', split='train', transform=svhn_transform, target_transform=None, download=True)
valset_svhn = torchvision.datasets.SVHN(args.data/'svhn', split='test', transform=svhn_transform, target_transform=None, download=True)
if args.dataset == 'mnist':
print("Training only on MNIST")
train_set, val_set = trainset_mnist, valset_mnist
elif args.dataset == 'svhn':
print("Training only on SVHN")
train_set, val_set = trainset_svhn, valset_svhn
else:
print("Training on both MNIST and SVHN")
train_set = torch.utils.data.ConcatDataset([trainset_mnist, trainset_svhn])
val_set = torch.utils.data.ConcatDataset([valset_mnist, valset_svhn])
print('{} Train samples and {} test samples found in MNIST'.format(len(trainset_mnist), len(valset_mnist)))
print('{} Train samples and {} test samples found in SVHN'.format(len(trainset_svhn), len(valset_svhn)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
alice_net = LeNet()
bob_net = LeNet()
mod_net = LeNet(nout=1)
if args.pretrained_alice:
print("=> using pre-trained weights from {}".format(args.pretrained_alice))
weights = torch.load(args.pretrained_alice)
alice_net.load_state_dict(weights['state_dict'], strict=False)
if args.pretrained_bob:
print("=> using pre-trained weights from {}".format(args.pretrained_bob))
weights = torch.load(args.pretrained_bob)
bob_net.load_state_dict(weights['state_dict'], strict=False)
if args.pretrained_mod:
print("=> using pre-trained weights from {}".format(args.pretrained_mod))
weights = torch.load(args.pretrained_mod)
mod_net.load_state_dict(weights['state_dict'], strict=False)
if args.resume:
print("=> resuming from checkpoint")
alice_weights = torch.load(args.save_path/'alicenet_checkpoint.pth.tar')
bob_weights = torch.load(args.save_path/'bobnet_checkpoint.pth.tar')
mod_weights = torch.load(args.save_path/'modnet_checkpoint.pth.tar')
alice_net.load_state_dict(alice_weights['state_dict'])
bob_net.load_state_dict(bob_weights['state_dict'])
mod_net.load_state_dict(mod_weights['state_dict'])
cudnn.benchmark = True
alice_net = alice_net.cuda()
bob_net = bob_net.cuda()
mod_net = mod_net.cuda()
print('=> setting adam solver')
parameters = chain(alice_net.parameters(), bob_net.parameters(), mod_net.parameters())
optimizer_compete = torch.optim.Adam(parameters, args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
optimizer_collaborate = torch.optim.Adam(mod_net.parameters(), args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
with open(args.save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['val_loss_full', 'val_loss_alice', 'val_loss_bob'])
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss_full', 'train_loss_alice', 'train_loss_bob'])
if args.log_terminal:
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
else:
logger=None
for epoch in range(args.epochs):
mode = 'compete' if (epoch%2)==0 else 'collaborate'
if args.fix_alice:
for fparams in alice_net.parameters():
fparams.requires_grad = False
if args.fix_bob:
for fparams in bob_net.parameters():
fparams.requires_grad = False
if args.fix_mod:
mode = 'compete'
for fparams in mod_net.parameters():
fparams.requires_grad = False
if args.log_terminal:
logger.epoch_bar.update(epoch)
logger.reset_train_bar()
# train for one epoch
if mode == 'compete':
train_loss = train(train_loader, alice_net, bob_net, mod_net, optimizer_compete, args.epoch_size, logger, training_writer, mode=mode)
elif mode == 'collaborate':
train_loss = train(train_loader, alice_net, bob_net, mod_net, optimizer_collaborate, args.epoch_size, logger, training_writer, mode=mode)
if args.log_terminal:
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
logger.reset_valid_bar()
if epoch%1==0:
# evaluate on validation set
errors, error_names = validate(val_loader, alice_net, bob_net, mod_net, epoch, logger, output_writer)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors))
if args.log_terminal:
logger.valid_writer.write(' * Avg {}'.format(error_string))
else:
print('Epoch {} completed'.format(epoch))
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, epoch)
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
if args.fix_alice:
decisive_error = errors[2]
elif args.fix_bob:
decisive_error = errors[1]
else:
decisive_error = errors[0] # epe_total
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error <= best_error
best_error = min(best_error, decisive_error)
save_alice_bob_mod(
args.save_path, {
'epoch': epoch + 1,
'state_dict': alice_net.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': bob_net.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': mod_net.state_dict()
},
is_best)
with open(args.save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
if args.log_terminal:
logger.epoch_bar.finish()
def train(train_loader, alice_net, bob_net, mod_net, optimizer, epoch_size, logger=None, train_writer=None, mode='compete'):
global args, n_iter
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
# switch to train mode
alice_net.train()
bob_net.train()
mod_net.train()
end = time.time()
for i, (img, target) in enumerate(train_loader):
# measure data loading time
#mode = 'compete' if (i%2)==0 else 'collaborate'
data_time.update(time.time() - end)
img_var = Variable(img.cuda())
target_var = Variable(target.cuda())
pred_alice = alice_net(img_var)
pred_bob = bob_net(img_var)
pred_mod = mod_net(img_var)
loss_alice = F.cross_entropy(pred_alice, target_var, reduce=False)
loss_bob = F.cross_entropy(pred_bob, target_var, reduce=False)
if mode=='compete':
if args.fix_bob:
if args.DEBUG: print("Training Alice Only")
loss = loss_alice.mean()
elif args.fix_alice:
loss = loss_bob.mean()
else:
if args.DEBUG: print("Training Both Alice and Bob")
pred_mod_soft = Variable(F.sigmoid(pred_mod).data, requires_grad=False)
loss = pred_mod_soft*loss_alice + (1-pred_mod_soft)*loss_bob
loss = loss.mean()
elif mode=='collaborate':
loss_alice2 = Variable(loss_alice.data, requires_grad = False)
loss_bob2 = Variable(loss_bob.data, requires_grad = False)
loss1 = F.sigmoid(pred_mod)*loss_alice2 + (1-F.sigmoid(pred_mod))*loss_bob2
loss2 = collaboration_loss(pred_mod, loss_alice2, loss_bob2)
loss = loss1.mean() + loss2.mean() + args.wr*mod_regularization_loss(pred_mod)
if i > 0 and n_iter % args.print_freq == 0:
train_writer.add_scalar('loss_alice', loss_alice.mean().item(), n_iter)
train_writer.add_scalar('loss_bob', loss_bob.mean().item(), n_iter)
train_writer.add_scalar('mod_mean', F.sigmoid(pred_mod).mean().item(), n_iter)
train_writer.add_scalar('mod_var', F.sigmoid(pred_mod).var().item(), n_iter)
train_writer.add_scalar('loss_regularization', mod_regularization_loss(pred_mod).item(), n_iter)
if mode=='compete':
train_writer.add_scalar('competetion_loss', loss.item(), n_iter)
elif mode=='collaborate':
train_writer.add_scalar('collaboration_loss', loss.item(), n_iter)
# record loss
losses.update(loss.item(), args.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), loss_alice.mean().item(), loss_bob.mean().item()])
if args.log_terminal:
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
def validate(val_loader, alice_net, bob_net, mod_net, epoch, logger=None, output_writer=[]):
global args
batch_time = AverageMeter()
accuracy = AverageMeter(i=3, precision=4)
# switch to evaluate mode
alice_net.eval()
bob_net.eval()
mod_net.eval()
end = time.time()
for i, (img, target) in enumerate(val_loader):
img_var = Variable(img.cuda(), volatile=True)
target_var = Variable(target.cuda(), volatile=True)
pred_alice = alice_net(img_var)
pred_bob = bob_net(img_var)
pred_mod = F.sigmoid(mod_net(img_var))
_ , pred_alice_label = torch.max(pred_alice.data, 1)
_ , pred_bob_label = torch.max(pred_bob.data, 1)
pred_label = (pred_mod.squeeze().data > 0.5).type_as(pred_alice_label) * pred_alice_label + (pred_mod.squeeze().data <= 0.5).type_as(pred_bob_label) * pred_bob_label
total_accuracy = (pred_label.cpu() == target).sum() / img.size(0)
alice_accuracy = (pred_alice_label.cpu() == target).sum() / img.size(0)
bob_accuracy = (pred_bob_label.cpu() == target).sum() / img.size(0)
accuracy.update([total_accuracy, alice_accuracy, bob_accuracy])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.log_terminal:
logger.valid_bar.update(i)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Accuray {}'.format(batch_time, accuracy))
if args.log_output:
output_writer.add_scalar('accuracy_alice', accuracy.avg[1], epoch)
output_writer.add_scalar('accuracy_bob', accuracy.avg[2], epoch)
output_writer.add_scalar('accuracy_total', accuracy.avg[0], epoch)
if args.log_terminal:
logger.valid_bar.update(len(val_loader))
return list(map(lambda x: 1-x, accuracy.avg)), ['Total loss', 'alice loss', 'bob loss']
if __name__ == '__main__':
import sys
with open("experiment_recorder.md", "a") as f:
f.write('\n python3 ' + ' '.join(sys.argv))
main()