-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspk_identification.py
240 lines (191 loc) · 9.78 KB
/
spk_identification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import sys
import random
import hickle as h
import pickle as p
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
#from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
from tensorflow.keras import layers
from tensorflow.keras.models import model_from_json
from Utils.datasets import split_train_test
def make_feats(filename):
filename = filename.split('.')[0] + ".npy"
features_path = r'/features/data/'
mfcc = np.load(features_path + "MFCC/" + filename)
delta = np.load(features_path + "DMFCC/" + filename)
ddelta = np.load(features_path + "DDMFCC/" + filename)
return np.row_stack((mfcc, delta, ddelta))
def data_transform(pairs):
train = pd.read_csv('train.tsv', sep = '\t')
files = []
for p in pairs:
files.append([train.iloc[p[0]]['path'], train.iloc[p[1]]['path']])
inp1 = np.asarray([make_feats(i[0]) for i in files])
inp2 = np.asarray([make_feats(i[1]) for i in files])
return (inp1, inp2)
def Encoder(input_shape, embedding_dimension, drop_out=0.05):
#Input placeholders
inp_placeholder = tf.keras.Input(shape=input_shape)
#Convolution layer 1
layer1 = layers.Conv2D(40, 25, activation='relu', name="L11", padding='same')(inp_placeholder)
norm1 = layers.BatchNormalization()(layer1)
drops1 = layers.SpatialDropout2D(drop_out)(norm1)
out1 = layers.MaxPooling2D(5)(drops1)
#Convolution layer 2
layer2 = layers.Conv2D(30, 15, activation='relu', name="L21", padding='same')(out1)
norm2 = layers.BatchNormalization()(layer2)
drops2 = layers.SpatialDropout2D(drop_out)(norm2)
out2 = layers.MaxPooling2D(4)(drops2)
#Convolution layer 3
layer3 = layers.Conv2D(10, 5, activation='relu', name="L31", padding='same')(out2)
norm3 = layers.BatchNormalization()(layer3)
drops3 = layers.SpatialDropout2D(drop_out)(norm3)
out3 = layers.MaxPooling2D((5,1))(drops3)
#Convolution layer 4
layer4 = layers.Conv2D(15, 5, activation='relu', name="L41", padding='same')(out3)
norm4 = layers.BatchNormalization()(layer4)
drops4 = layers.SpatialDropout2D(drop_out)(norm4)
out4 = layers.MaxPooling2D(1)(drops4)
#Convolution layer 5
layer5 = layers.Conv2D(10, 5, activation='relu', name="L51", padding='same')(out4)
norm5 = layers.BatchNormalization()(layer5)
out5 = layers.SpatialDropout2D(drop_out)(norm5)
#Flattened layer
flatten = layers.Flatten()(out5)
#Dense Layer
embeds = layers.Dense(embedding_dimension, activation = "sigmoid", name="D11")(flatten)
#Definining our model
encoder = tf.keras.Model(inputs=inp_placeholder, outputs = embeds)
return encoder
def SiameseNetwork(input_shape):
inp_1 = tf.keras.Input(shape=input_shape)
inp_2 = tf.keras.Input(shape=input_shape)
encoder1 = Encoder(input_shape = (5388, 20, 3), embedding_dimension = 128)
encoder2 = Encoder(input_shape = (5388, 20, 3), embedding_dimension = 128)
#Encode each branch
embeds1 = encoder1(inp_1)
embeds2 = encoder2(inp_2)
#Siamese network
embedded_distance = layers.Subtract(name='subtract_embeddings')([embeds1, embeds2])
embedded_distance1 = layers.Lambda(lambda x: tf.sqrt(tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)), name='euclidean_distance')(embedded_distance)
siamese_out = layers.Dense(2, activation='sigmoid', name="OutputLayer")(embedded_distance1)
#Model
siamesemodel = tf.keras.Model(inputs=[inp_1,inp_2], outputs = siamese_out)
return (siamesemodel, encoder1, encoder2)
def train_network(model, encoder1, encoder2, train, ytrain, val, yval, batchsize, num_epochs, train_files_df, model_save_path, lr=0.001):
X1 = tf.keras.Input(shape=(5388, 20, 3))
X2 = tf.keras.Input(shape=(5388, 20, 3))
y = tf.placeholder('int32',[None],name='t1')
siamese_out = model([X1, X2])
#Loss
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = y,logits = siamese_out)
loss = tf.reduce_mean(loss)
#Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss)
soft_out = tf.nn.softmax(siamese_out)
y_onehot = tf.one_hot(y, 2)
#Prediction and accuracy
pred = tf.equal(tf.argmax(soft_out,1), tf.argmax(y_onehot,1))
accuracy = tf.reduce_mean(tf.cast(pred, tf.float32))
#Saving history
hist = {'train_loss':[], 'val_loss':[], 'train_acc':[], 'val_acc':[]}
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
steps = train.shape[0]//batchsize
#steps = 1000
print("Steps:", steps)
for epoch in range(num_epochs):
epoch_loss1 = 0
epoch_acc1 = 0
epoch_loss2 = 0
epoch_acc2 = 0
for step in range(steps):
start = step*batchsize
end = min(start + batchsize, train.shape[0])
batch_x = train[start:end]
batchy = ytrain[start:end]
batch_data1, batch_data2 = data_transform(batch_x, train_files_df, batchsize)
_, cost = sess.run([optimizer, loss], feed_dict={X1:batch_data1, X2:batch_data2, y:batchy})
train_acc = sess.run(accuracy, feed_dict = {X1:batch_data1, X2:batch_data2, y:batchy})
epoch_loss1 += cost
epoch_acc1 += train_acc
#Reverse
_, cost = sess.run([optimizer, loss], feed_dict={X1:batch_data2, X2:batch_data1, y:batchy})
train_acc = sess.run(accuracy, feed_dict = {X1:batch_data2, X2:batch_data1, y:batchy})
epoch_loss2 += cost
epoch_acc2 += train_acc
if step%500 == 0:
print("Epoch:",epoch,"Step:",step+1,"TrainLoss:",(epoch_loss1/(step+1) + epoch_loss2/(step+1))/2, "accuracy:", (epoch_acc2/(step+1) + epoch_acc2/(step+1))/2)
hist['train_loss'].append((epoch_loss1/(step+1) + epoch_loss2/(step+1))/2)
hist['train_acc'].append((epoch_acc1/(step+1) + epoch_acc2/(step+1))/2)
spkModel_json = model.to_json()
ebdModel1_json = encoder1.to_json()
ebdModel2_json = encoder2.to_json()
with open(model_save_path + "Smodel" + str(epoch) + ".json", "w") as json_file:
json_file.write(spkModel_json)
with open(model_save_path + "Emodel1" + str(epoch) + ".json", "w") as json_file:
json_file.write(ebdModel1_json)
with open(model_save_path + "Emodel2" + str(epoch) + ".json", "w") as json_file:
json_file.write(ebdModel2_json)
model.save_weights(model_save_path + "Smodel"+str(epoch)+".h5")
encoder1.save_weights(model_save_path + "Emodel1"+str(epoch)+".h5")
encoder2.save_weights(model_save_path + "Emodel2"+str(epoch)+".h5")
print("Saved model to disk")
print("Validating results")
#print("Epoch:",epoch,"Loss:", epoch_loss/steps, "accuracy:", epoch_acc/steps)
val_batches = val.shape[0]//batchsize
#val_batches = 2
val_l = 0
val_a = 0
for x in range(val_batches):
start = x*batchsize
end = min(start + batchsize, val.shape[0])
valbatch_x = val[start:end]
valbatchy = yval[start:end]
valbatch_data1, valbatch_data2 = data_transform(valbatch_x, train_files_df, batchsize)
val_loss, val_acc = sess.run([loss,accuracy], feed_dict = {X1:valbatch_data1,
X2:valbatch_data2,
y:valbatchy})
val_l += val_loss
val_a += val_acc
hist['val_loss'].append(val_loss)
hist['val_acc'].append(val_acc)
print("Validation:","Epoch:",epoch,"Loss:", val_l/val_batches, "accuracy:", val_a/val_batches)
return (hist, model, encoder1, encoder2)
if __name__ == "__main__":
#train tsv file
train_file_path = sys.argv[1]
train_data_path = sys.argv[2]
#loading features and splitting them into train, validation and test
train, trainy, val, valy, test, testy = split_train_test(np.load(train_data_path))
#Creating the model structure
siamese, encoder1, encoder2 = SiameseNetwork(input_shape = (5388, 20, 3))
ori_train_file = pd.read_csv(train_file_path, sep = '\t')
'''
#Creating data pipeline training
tfdata = tf.data.Dataset.from_tensor_slices(train)
tflabels = tf.data.Dataset.from_tensor_slices(trainy)
tfdata = tfdata.map(data_transform)
training_data = tf.data.Dataset.zip((tfdata, tflabels)).batch(64)
tr_iter = tfdata.make_one_shot_iterator()
next_batch = tr_iter.get_next()
#Creating data pipeline validation
tfval = tf.data.Dataset.from_tensor_slices(val)
tfvallabels = tf.data.Dataset.from_tensor_slices(valy)
tfdata = tfdata.map(data_transform)
val_data = tf.data.Dataset.zip((tfval, tfvallabels)).batch(64)
v_iter = tfdata.make_one_shot_iterator()
next_batch = v_iter.get_next()
#Compiling and training
siamese.compile(optimizer = 'adam',\
loss = tf.keras.losses.BinaryCrossentropy(from_logits=True),\
metrics = ['accuracy'])
siamese.fit(training_data, epochs=2, validation_data=val_data)
'''
#Training model
model_hist, siamese, encoder1, encoder2 = train_network(model = siamese, encoder1 = encoder1, encoder2 = encoder2, train = train, ytrain = trainy, val = val, yval = valy, train_files_df = ori_train_file, batchsize = 64, num_epochs = 1, model_save_path = "features/models/")