diff --git a/README.md b/README.md index 16e4134..5bb351f 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,107 @@ -# Malaria-Detection-from-Cell-Images-using-Deep-Learning -Malaria Detection from Cell Images using Deep Learning - NasNetMobile Model +### Malaria Detection from Microscopic-Tissue Images with Deep Learning (Auto ML, Custom Convolutional Neural Network, NasNetMobile) +
+Domain : Computer Vision, Machine Learning +Sub-Domain : Deep Learning, Image Recognition +Techniques : Deep Convolutional Neural Network, Transfer Learning, ImageNet, Auto ML, NASNetMobile +Application : Image Recognition, Image Classification, Medical Imaging ++ +### Description +
+1. Detected Cancer from microscopic tissue images (histopathologic) with Auto ML (Google’s “NASNet”). +2. For training, concatenated global pooling (max, average), dropout and dense layers to the output layer for final output prediction. +3. Attained validation accuracy of 95.6% and loss 0.30 on 250K+ (6.5GB+) image cancer dataset. ++ +#### Code +
+GitHub Link : Histopathologic Cancer Detection(GitHub) +GitLab Link : Histopathologic Cancer Detection(GitLab) +Portfolio : Anjana Tiha's Portfolio ++ +#### Dataset +
+Dataset Name : Malaria Cell Images Dataset +Dataset Link : Malaria Cell Images Dataset (Kaggle) + + +### Dataset Details ++Dataset Name : Malaria Cell Images Dataset +Number of Class : 2 ++ +| Dataset Subtype | Number of Image | Size of Images (GB/Gigabyte) | +| :-------------- | --------------: | ---------------------------: | +| **Total** | 27,588 | 337 MB | +| **Training** | 20,670 | - MB | +| **Validation** | 6,888 | - MB | +| **Testing** | - | - | + + +### Model and Training Prameters +| Current Parameters | Value | +| :------------------- | ----------------------------------------------------------: | +| **Base Model** | NashNetMobile | +| **Optimizers** | Adam | +| **Loss Function** | Categorical Crossentropy | +| **Learning Rate** | 0.0001 | +| **Batch Size** | 176 | +| **Number of Epochs** | 10 | +| **Training Time** | 45 Min | + + +### Model Performance Metrics (Prediction/ Recognition / Classification) +| Dataset | Training | Validation | Test | +| :------------------- | -------------: | ------------: | --------: | +| **Accuracy** | 96.47% | 95.72% | - | +| **Loss** | 0.14 | 0.30 | - | +| **Precision** | --- | --- | - | +| **Recall** | --- | --- | - | +| **Roc-Auc** | --- | --- | - | + + +### Other Experimented Model and Training Prameters +| Parameters (Experimented) | Value | +| :------------------------ | -----------------------------------------------------: | +| **Base Models** | NashNet(NashNetMobile) | +| **Optimizers** | Adam | +| **Loss Function** | Categorical Crossentropy | +| **Learning Rate** | 0.0001, 0.00001, 0.000001, 0.0000001 | +| **Batch Size** | 32, 64, 176 | +| **Number of Epochs** | 10 | +| **Training Time** | 45 Min | + + +#### Tools / Libraries ++Languages : Python +Tools/IDE : Kaggle +Libraries : Keras, TensorFlow, NasNetMobile ++ +#### Dates ++Duration : February 2019 - Current +Current Version : v1.0.0.9 +Last Update : 03.14.2019 +