diff --git a/README.md b/README.md index 16e4134..5bb351f 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,107 @@ -# Malaria-Detection-from-Cell-Images-using-Deep-Learning -Malaria Detection from Cell Images using Deep Learning - NasNetMobile Model +### Malaria Detection from Microscopic-Tissue Images with Deep Learning (Auto ML, Custom Convolutional Neural Network, NasNetMobile) +
+Domain             : Computer Vision, Machine Learning
+Sub-Domain         : Deep Learning, Image Recognition
+Techniques         : Deep Convolutional Neural Network, Transfer Learning, ImageNet, Auto ML, NASNetMobile
+Application        : Image Recognition, Image Classification, Medical Imaging
+
+ +### Description +
+1. Detected Cancer from microscopic tissue images (histopathologic) with Auto ML (Google’s “NASNet”).
+2. For training, concatenated global pooling (max, average), dropout and dense layers to the output layer for final output prediction.
+3. Attained validation accuracy of 95.6% and loss 0.30 on 250K+ (6.5GB+) image cancer dataset.
+
+ +#### Code +
+GitHub Link      : Histopathologic Cancer Detection(GitHub)
+GitLab Link      : Histopathologic Cancer Detection(GitLab)
+Portfolio        : Anjana Tiha's Portfolio
+
+ +#### Dataset +
+Dataset Name     : Malaria Cell Images Dataset
+Dataset Link     : Malaria Cell Images Dataset (Kaggle)
+
+
+### Dataset Details
+
+Dataset Name            : Malaria Cell Images Dataset
+Number of Class         : 2
+
+ +| Dataset Subtype | Number of Image | Size of Images (GB/Gigabyte) | +| :-------------- | --------------: | ---------------------------: | +| **Total** | 27,588 | 337 MB | +| **Training** | 20,670 | - MB | +| **Validation** | 6,888 | - MB | +| **Testing** | - | - | + + +### Model and Training Prameters +| Current Parameters | Value | +| :------------------- | ----------------------------------------------------------: | +| **Base Model** | NashNetMobile | +| **Optimizers** | Adam | +| **Loss Function** | Categorical Crossentropy | +| **Learning Rate** | 0.0001 | +| **Batch Size** | 176 | +| **Number of Epochs** | 10 | +| **Training Time** | 45 Min | + + +### Model Performance Metrics (Prediction/ Recognition / Classification) +| Dataset | Training | Validation | Test | +| :------------------- | -------------: | ------------: | --------: | +| **Accuracy** | 96.47% | 95.72% | - | +| **Loss** | 0.14 | 0.30 | - | +| **Precision** | --- | --- | - | +| **Recall** | --- | --- | - | +| **Roc-Auc** | --- | --- | - | + + +### Other Experimented Model and Training Prameters +| Parameters (Experimented) | Value | +| :------------------------ | -----------------------------------------------------: | +| **Base Models** | NashNet(NashNetMobile) | +| **Optimizers** | Adam | +| **Loss Function** | Categorical Crossentropy | +| **Learning Rate** | 0.0001, 0.00001, 0.000001, 0.0000001 | +| **Batch Size** | 32, 64, 176 | +| **Number of Epochs** | 10 | +| **Training Time** | 45 Min | + + +#### Tools / Libraries +
+Languages               : Python
+Tools/IDE               : Kaggle
+Libraries               : Keras, TensorFlow, NasNetMobile
+
+ +#### Dates +
+Duration                : February 2019 - Current
+Current Version         : v1.0.0.9
+Last Update             : 03.14.2019
+