You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Malaria Detection from Microscopic-Tissue Images with Deep Learning (NasNetMobile)
Domain : Computer Vision, Machine Learning
Sub-Domain : Deep Learning, Image Recognition
Techniques : Deep Convolutional Neural Network, Transfer Learning, NASNetMobile
Application : Image Recognition, Image Classification, Medical Imaging, Bio-Medical Imaging
Description
Detected Malaria from segmented cells from the thin blood smear slide images collected from Malaria screening research activity by National Institutes of Health (NIH) with Deep Learning (Convolutional Neural Network) specifically by training pretrained model Nashnet completely from scratch.
Before feeding data into model, preprocessed and augmented image dataset containing 27,558 images (337MB) by adding random flips, rotations and shears.
After loading pretrainied model NasNetMobile, added global max pooling, global average pooling, flattened layer to output of trained model and concatenated them and also added dropout and batch normalization layers for regularization before adding final output layer - a dense layer with softmax activation and compiling with optimizer-Adam with learning rate-0.0001, metric-accuracy and loss-categorical crossentropy.
Trained for 10 iterations and attained training accuracy 96.47% and loss(categorical crossentrpy) 0.1026 and validation accuracy of 95.46% and loss 0.1385.