-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperform_motif_insertion_analysis.py
514 lines (458 loc) · 34.4 KB
/
perform_motif_insertion_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import numpy as np
import pandas as pd
import os
import pdb
import argparse
import wandb
import h5py
import json
from tqdm import tqdm
import scipy.stats as stats
from sklearn.metrics import r2_score
import torch
import lightning.pytorch as pl
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from lightning.pytorch.callbacks import ModelCheckpoint
from promoter_modelling.dataloaders import FluorescenceData, FluorescenceData_classification, FluorescenceData_with_motifs, FluorescenceData_DNABERT, \
LL100, CCLE, Roadmap, Sharpr_MPRA, SuRE, ENCODETFChIPSeq, STARRSeq, Malinois_MPRA, Malinois_MPRA_DNABERT, Malinois_MPRA_with_motifs, lentiMPRA
from promoter_modelling import backbone_modules
from promoter_modelling import MTL_modules
from promoter_modelling.utils import fasta_utils
from promoter_modelling.utils import misc_utils
np.random.seed(97)
torch.manual_seed(97)
def perform_analysis(args, config, finetune=False):
# create directories
root_dir = config["root_dir"]
motif_insertion_analysis_dir = os.path.join(root_dir, "motif_insertion_analysis")
if not os.path.exists(motif_insertion_analysis_dir):
os.mkdir(motif_insertion_analysis_dir)
# should already exist
root_data_dir = config["root_data_dir"]
common_cache_dir = os.path.join(root_data_dir, "common")
model_save_dir = os.path.join(root_dir, "saved_models")
# create data loaders
if args.modelling_strategy == "joint":
assert args.joint_tasks is not None, "Must specify tasks to jointly train on"
tasks = args.joint_tasks.split(",")
elif args.modelling_strategy == "pretrain+finetune" or args.modelling_strategy == "pretrain+linear_probing":
assert args.pretrain_tasks is not None, "Must specify tasks to pretrain on"
assert args.finetune_tasks is not None, "Must specify tasks to finetune or perform linear probing on"
pretrain_tasks = args.pretrain_tasks.split(",")
finetune_tasks = args.finetune_tasks.split(",")
if finetune:
tasks = finetune_tasks
else:
tasks = pretrain_tasks
elif args.modelling_strategy == "single_task":
assert args.single_task is not None, "Must specify task to train on"
tasks = [args.single_task]
else:
raise ValueError("Invalid modelling strategy")
# instantiate dataloaders
dataloaders = {}
print("Instantiating dataloaders...")
for task in tasks:
if task == "all_tasks" or task == "RNASeq": # special task names
dataloaders[task] = []
tasks_set = None
if args.modelling_strategy.startswith("pretrain"):
if task == "all_tasks":
tasks_set = ["LL100", "CCLE", "Roadmap", "SuRE_classification", "Sharpr_MPRA", "ENCODETFChIPSeq"]
elif task == "RNASeq":
tasks_set = ["LL100", "CCLE", "Roadmap"]
elif args.modelling_strategy == "joint":
if task == "all_tasks":
tasks_set = ["LL100", "CCLE", "Roadmap", "SuRE_classification", "Sharpr_MPRA", "ENCODETFChIPSeq", "FluorescenceData"]
elif task == "RNASeq":
tasks_set = ["LL100", "CCLE", "Roadmap"]
for t in tasks_set:
if t == "LL100":
dataloaders[task].append(LL100.LL100DataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "LL-100"), \
common_cache_dir=common_cache_dir))
elif t == "CCLE":
dataloaders[task].append(CCLE.CCLEDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "CCLE"), \
common_cache_dir=common_cache_dir))
elif t == "Roadmap":
dataloaders[task].append(Roadmap.RoadmapDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Roadmap"), \
common_cache_dir=common_cache_dir))
elif t == "Sharpr_MPRA":
dataloaders[task].append(Sharpr_MPRA.SharprMPRADataLoader(batch_size=batch_size, \
data_dir=os.path.join(root_data_dir, "Sharpr_MPRA")))
elif t == "lentiMPRA":
dataloaders[task].append(lentiMPRA.lentiMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "lentiMPRA", \
common_cache_dir=common_cache_dir,
shrink_test_set=args.shrink_test_set)))
elif t == "STARRSeq":
dataloaders[task].append(STARRSeq.STARRSeqDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "STARRSeq"), \
common_cache_dir=common_cache_dir))
elif t == "SuRE_classification":
for genome_id in ["SuRE42_HG02601", "SuRE43_GM18983", "SuRE44_HG01241", "SuRE45_HG03464"]:
dataloaders[task].append(SuRE.SuREDataLoader(batch_size=batch_size, \
genome_id=genome_id, \
cache_dir=os.path.join(root_data_dir, "SuRE"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "SuRE_data"), \
task="classification", \
shrink_test_set=args.shrink_test_set))
elif t == "SuRE_regression":
for genome_id in ["SuRE42_HG02601", "SuRE43_GM18983", "SuRE44_HG01241", "SuRE45_HG03464"]:
dataloaders[task].append(SuRE.SuREDataLoader(batch_size=batch_size, \
genome_id=genome_id, \
cache_dir=os.path.join(root_data_dir, "SuRE"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "SuRE_data"), \
task="regression", \
shrink_test_set=args.shrink_test_set))
elif t == "ENCODETFChIPSeq":
dataloaders[task].append(ENCODETFChIPSeq.ENCODETFChIPSeqDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "ENCODETFChIPSeq"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "ENCODETFChIPSeq_data"), \
shrink_test_set=args.shrink_test_set, \
fasta_shuffle_letters_path=args.fasta_shuffle_letters_path))
elif t == "FluorescenceData":
if args.model_name.startswith("MotifBased"):
dataloaders[task].append(FluorescenceData_with_motifs.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_with_motifs")))
elif "DNABERT" in args.model_name:
dataloaders[task].append(FluorescenceData_DNABERT.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DNABERT")))
elif (args.modelling_strategy == "pretrain+simple_regression" and finetune) or (args.modelling_strategy == "single_task_simple_regression"):
dataloaders[task].append(FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"), \
use_construct=True))
else:
dataloaders[task].append(FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData")))
elif t == "FluorescenceData_DE":
if args.model_name.startswith("MotifBased"):
dataloaders[task].append(FluorescenceData_with_motifs.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_with_motifs_DE"), \
predict_DE=True))
elif "DNABERT" in args.model_name:
dataloaders[task].append(FluorescenceData_DNABERT.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DNABERT_DE"), \
predict_DE=True))
elif (args.modelling_strategy == "pretrain+simple_regression" and finetune) or (args.modelling_strategy == "single_task_simple_regression"):
dataloaders[task].append(FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DE"), \
use_construct=True, \
predict_DE=True))
else:
dataloaders[task].append(FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DE"), \
predict_DE=True))
elif t == "FluorescenceData_classification":
dataloaders[task].append(FluorescenceData_classification.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_classification")))
elif t == "Malinois_MPRA":
if args.model_name.startswith("MotifBased"):
dataloaders[task].append(Malinois_MPRA_with_motifs.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir))
elif "DNABERT" in args.model_name:
dataloaders[task].append(Malinois_MPRA_DNABERT.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir))
else:
dataloaders[task].append(Malinois_MPRA.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir))
elif task == "LL100":
dataloaders[task] = LL100.LL100DataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "LL-100"), \
common_cache_dir=common_cache_dir)
elif task == "CCLE":
dataloaders[task] = CCLE.CCLEDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "CCLE"), \
common_cache_dir=common_cache_dir)
elif task == "Roadmap":
dataloaders[task] = Roadmap.RoadmapDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Roadmap"), \
common_cache_dir=common_cache_dir)
elif task == "STARRSeq":
dataloaders[task] = STARRSeq.STARRSeqDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "STARRSeq"), \
common_cache_dir=common_cache_dir)
elif task == "Sharpr_MPRA":
dataloaders[task] = Sharpr_MPRA.SharprMPRADataLoader(batch_size=batch_size, \
data_dir=os.path.join(root_data_dir, "Sharpr_MPRA"))
elif task == "lentiMPRA":
dataloaders[task] = lentiMPRA.lentiMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "lentiMPRA"), \
common_cache_dir=common_cache_dir,
shrink_test_set=args.shrink_test_set)
elif task == "SuRE_classification":
dataloaders[task] = []
for genome_id in ["SuRE42_HG02601", "SuRE43_GM18983", "SuRE44_HG01241", "SuRE45_HG03464"]:
dataloaders[task].append(SuRE.SuREDataLoader(batch_size=batch_size, \
genome_id=genome_id, \
cache_dir=os.path.join(root_data_dir, "SuRE"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "SuRE_data"), \
task="classification", \
shrink_test_set=args.shrink_test_set))
elif task == "SuRE_regression":
dataloaders[task] = []
for genome_id in ["SuRE42_HG02601", "SuRE43_GM18983", "SuRE44_HG01241", "SuRE45_HG03464"]:
dataloaders[task].append(SuRE.SuREDataLoader(batch_size=batch_size, \
genome_id=genome_id, \
cache_dir=os.path.join(root_data_dir, "SuRE"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "SuRE_data"), \
task="regression", \
shrink_test_set=args.shrink_test_set))
elif task == "ENCODETFChIPSeq":
dataloaders[task] = ENCODETFChIPSeq.ENCODETFChIPSeqDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "ENCODETFChIPSeq"), \
common_cache_dir=common_cache_dir, \
datasets_save_dir=os.path.join(root_data_dir, "ENCODETFChIPSeq_data"), \
shrink_test_set=args.shrink_test_set, \
fasta_shuffle_letters_path=args.fasta_shuffle_letters_path)
elif task == "FluorescenceData":
if args.model_name.startswith("MotifBased"):
dataloaders[task] = FluorescenceData_with_motifs.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_with_motifs"))
elif "DNABERT" in args.model_name:
dataloaders[task] = FluorescenceData_DNABERT.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DNABERT"))
elif (args.modelling_strategy == "pretrain+simple_regression" and finetune) or (args.modelling_strategy == "single_task_simple_regression"):
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"), \
use_construct=True)
else:
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"))
elif task == "FluorescenceData_DE":
if args.model_name.startswith("MotifBased"):
dataloaders[task] = FluorescenceData_with_motifs.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_with_motifs_DE"), \
predict_DE=True)
elif "DNABERT" in args.model_name:
dataloaders[task] = FluorescenceData_DNABERT.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DNABERT_DE"), \
predict_DE=True)
elif (args.modelling_strategy == "pretrain+simple_regression" and finetune) or (args.modelling_strategy == "single_task_simple_regression"):
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DE"), \
use_construct=True, \
predict_DE=True)
else:
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_DE"), \
predict_DE=True)
elif task == "FluorescenceData_classification":
dataloaders[task] = FluorescenceData_classification.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData_classification"))
elif task == "FluorescenceData_JURKAT":
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"), \
return_specified_cells=[0])
elif task == "FluorescenceData_K562":
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"), \
return_specified_cells=[1])
elif task == "FluorescenceData_THP1":
dataloaders[task] = FluorescenceData.FluorescenceDataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "FluorescenceData"), \
return_specified_cells=[2])
elif task == "Malinois_MPRA":
if args.model_name.startswith("MotifBased"):
dataloaders[task] = Malinois_MPRA_with_motifs.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir)
elif "DNABERT" in args.model_name:
dataloaders[task] = Malinois_MPRA_DNABERT.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir)
else:
dataloaders[task] = Malinois_MPRA.MalinoisMPRADataLoader(batch_size=batch_size, \
cache_dir=os.path.join(root_data_dir, "Malinois_MPRA"), \
common_cache_dir=common_cache_dir)
all_dataloaders = []
for task in tasks:
if dataloaders[task].__class__ == list:
all_dataloaders.extend(dataloaders[task])
else:
all_dataloaders.append(dataloaders[task])
print("Total number of dataloaders = {}".format(len(all_dataloaders)))
# setup training parameters
if "pretrain" in args.modelling_strategy and not finetune:
metric_to_monitor = args.pretrain_metric_to_monitor
metric_direction_which_is_optimal = args.pretrain_metric_direction_which_is_optimal
lr = args.pretrain_lr
weight_decay = args.pretrain_weight_decay
batch_size = args.pretrain_batch_size
max_epochs = args.pretrain_max_epochs
train_mode = args.pretrain_train_mode
else:
metric_to_monitor = args.metric_to_monitor
metric_direction_which_is_optimal = args.metric_direction_which_is_optimal
lr = args.lr
weight_decay = args.weight_decay
batch_size = args.batch_size
max_epochs = args.max_epochs
train_mode = args.train_mode
# multiple models are trained only for finetuning/joint training/single task training
num_models_to_train = args.num_random_seeds
if "pretrain" in args.modelling_strategy and not finetune:
num_models_to_train = 1
# model name format
name_format = ""
if "pretrain" in args.modelling_strategy and finetune:
if "finetune" in args.modelling_strategy:
name_format = "finetune_on_{}_pretrained_on_{}".format("+".join(tasks), "+".join(pretrain_tasks))
if "linear_probing" in args.modelling_strategy:
name_format = "linear_probing_on_{}_pretrained_on_{}".format("+".join(tasks), "+".join(pretrain_tasks))
if "simple_regression" in args.modelling_strategy:
name_format = "simple_regression_on_{}_pretrained_on_{}".format("+".join(tasks), "+".join(pretrain_tasks))
elif "pretrain" in args.modelling_strategy and not finetune:
name_format = "pretrain_on_{}".format("+".join(tasks))
elif "joint" in args.modelling_strategy:
name_format = "joint_train_on_{}".format("+".join(tasks))
elif "single" in args.modelling_strategy:
if "simple_regression" in args.modelling_strategy:
name_format = "simple_regression_on_{}".format("+".join(tasks))
else:
name_format = "individual_training_on_{}".format("+".join(tasks))
# map to model classes
model_class = backbone_modules.get_backbone_class(args.model_name)
if args.model_name != "MTLucifer":
name_format = f"{args.model_name}_" + name_format
# add optional name suffix to model name - only when not pretraining
if args.optional_name_suffix is not None:
if "pretrain" in args.modelling_strategy:
if finetune:
name_format += "_" + args.optional_name_suffix
else:
name_format += "_" + args.optional_name_suffix
# get best trained model path
best_model_path = ""
minimize_metric = metric_direction_which_is_optimal == "min"
if minimize_metric:
best_metric = np.inf
else:
best_metric = -np.inf
# find best model across seeds
for seed in range(num_models_to_train):
if num_models_to_train > 1:
print("Random seed = {}".format(seed))
# set random seed
np.random.seed(seed)
torch.manual_seed(seed)
name = name_format + "_seed_{}".format(seed)
else:
name = name_format
cur_models_save_dir = os.path.join(model_save_dir, name, "default", "checkpoints")
# find path to best existing model
all_saved_models = os.listdir(cur_models_save_dir)
for path in all_saved_models:
val_metric = path.split("=")[-1][:-len(".ckpt")]
if "-v" in val_metric:
val_metric = float(val_metric[:-len("-v1")])
else:
val_metric = float(val_metric)
if minimize_metric:
if val_metric < best_metric:
best_metric = val_metric
best_model_path = os.path.join(cur_models_save_dir, path)
else:
if val_metric > best_metric:
best_metric = val_metric
best_model_path = os.path.join(cur_models_save_dir, path)
print("Best existing model across seeds is: {}".format(best_model_path))
# load it
checkpoint = torch.load(best_model_path, map_location=device)
new_state_dict = {}
for key in checkpoint["state_dict"]:
if key.startswith("model."):
new_state_dict[key[len("model."):]] = checkpoint["state_dict"][key]
# instantiate model
mtlpredictor = MTL_modules.MTLPredictor(model_class=backbone_modules.MTLucifer, \
all_dataloader_modules=all_dataloaders, \
batch_size=batch_size, \
use_preconstructed_dataloaders=True).to(device)
mtlpredictor.model.load_state_dict(new_state_dict, strict=False)
print("Loaded best trained model")
# load meme file
meme_file = args.meme_file
# parse meme file
motifs = misc_utils.parse_meme_file(meme_file)
print("Num motifs = {}".format(len(motifs)))
assert all_dataloaders[-1].name == "Fluorescence", "Last task must be FluorescenceData - the anaylsis is performed using the fluorescence data. You need models trained using the train_models.py script with the last task as FluorescenceData."
all_fluorescence_measurements = all_dataloaders[-1].merged
# ascertain the importances of each motif
if not os.path.exists(os.path.join(motif_insertion_analysis_dir, "{}.tsv".format(name_format))):
np.random.seed(97)
for i, motif in tqdm(enumerate(motifs)):
print(motif.motif_name)
all_motif_inserted_sequences_raw = [misc_utils.insert_motif_into_sequence(seq, motif, args.num_motif_insertions_per_sequence) \
for seq in all_fluorescence_measurements["sequence"]]
# get the fluorescence predictions for each sequence with the motif inserted
all_motif_inserted_sequences = [fasta_utils.one_hot_encode(seq).astype(np.float32) for seq in all_motif_inserted_sequences_raw]
preds = []
for j in range(0, len(all_motif_inserted_sequences), batch_size):
batch = np.array(all_motif_inserted_sequences[j:min(j+batch_size, len(all_motif_inserted_sequences))])
batch = torch.tensor(batch).to(device)
with torch.no_grad():
pred = mtlpredictor.model(batch)[0][-1]
preds.append(pred.cpu().numpy())
preds = np.concatenate(preds, axis=0)
all_fluorescence_measurements["motif_inserted_sequence_for_{}".format(motif.motif_name)] = all_motif_inserted_sequences_raw
for output_name, pred in zip(all_dataloaders[-1].output_names, preds.T):
all_fluorescence_measurements["{}_motif_insertion_prediction_for_{}".format(output_name, motif.motif_name)] = pred
# get baseline predictions
baseline_predictions = []
all_baseline_sequences = [fasta_utils.one_hot_encode(seq).astype(np.float32) for seq in all_fluorescence_measurements["sequence"]]
for j in tqdm(range(0, all_fluorescence_measurements.shape[0], batch_size)):
batch = np.array(all_baseline_sequences[j:min(j+batch_size, len(all_baseline_sequences))])
batch = torch.tensor(batch).to(device)
with torch.no_grad():
pred = mtlpredictor.model(batch)[0][-1]
baseline_predictions.append(pred.cpu().numpy())
baseline_predictions = np.concatenate(baseline_predictions, axis=0)
for output_name, bpred in zip(all_dataloaders[-1].output_names, baseline_predictions.T):
all_fluorescence_measurements["baseline_{}_prediction".format(output_name)] = bpred
if i % 25 == 0:
all_fluorescence_measurements = all_fluorescence_measurements.copy()
# save the results
all_fluorescence_measurements.to_csv(os.path.join(motif_insertion_analysis_dir, "{}.tsv".format(name_format)), sep="\t", index=False)
else:
print("Motif insertion results already exist")
args = argparse.ArgumentParser()
args.add_argument("--config_path", type=str, default="./config.json", help="Path to config file")
args.add_argument("--modelling_strategy", type=str, required=True, help="Modelling strategy to use, either 'joint', 'pretrain+finetune', 'pretrain+linear_probing' or 'single_task'")
args.add_argument("--joint_tasks", type=str, default=None, help="Comma separated list of tasks to jointly train on")
args.add_argument("--pretrain_tasks", type=str, default=None, help="Comma separated list of tasks to pretrain on")
args.add_argument("--finetune_tasks", type=str, default=None, help="Comma separated list of tasks to finetune or perform linear probing on")
args.add_argument("--single_task", type=str, default=None, help="Task to train on")
args.add_argument("--shrink_test_set", action="store_true", help="Shrink large test sets (SuRE and ENCODETFChIPSeq) to 10 examples to make evaluation faster")
args.add_argument("--batch_size", type=int, default=96, help="Batch size")
args.add_argument("--pretrain_batch_size", type=int, default=96, help="Pretrain batch size")
args.add_argument("--num_random_seeds", type=int, default=1, help="Number of random seeds to train with")
args.add_argument("--metric_to_monitor", type=str, default="val_Fluorescence_mean_SpearmanR", help="Name of metric to monitor for early stopping")
args.add_argument("--metric_direction_which_is_optimal", type=str, default="max", help="Should metric be maximised (specify 'max') or minimised (specify 'min')?")
args.add_argument("--pretrain_metric_to_monitor", type=str, default="overall_val_loss", help="Name of pretrain metric to monitor for early stopping")
args.add_argument("--pretrain_metric_direction_which_is_optimal", type=str, default="min", help="Should pretrain metric be maximised (specify 'max') or minimised (specify 'min')?")
args.add_argument("--meme_file", type=str, required=True, help="Path to meme file containing motifs to analyse")
args.add_argument("--num_motif_insertions_per_sequence", type=int, default=10, help="Number of motif insertions to perform per sequence")
args = args.parse_args()
assert os.path.exists(args.config_path), "Config file does not exist"
# Load config file
with open(args.config_path, "r") as f:
config = json.load(f)
# use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# train models
if "pretrain" in args.modelling_strategy:
perform_analysis(args, config, finetune=True)
else:
perform_analysis(args, config, finetune=False)