-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrainWithSSIMLoss.py
196 lines (169 loc) · 7.56 KB
/
TrainWithSSIMLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
from torch.autograd import Variable
import time
from model.utils import DataLoader
from utils import *
from datetime import datetime
import argparse
import torchgeometry as tgm
parser = argparse.ArgumentParser(description="anomaly detection using aemem")
parser.add_argument('--gpus', nargs='+', type=str, help='gpus')
parser.add_argument('--batch_size', type=int, default=4,
help='batch size for training')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs for training')
parser.add_argument('--loss_compact', type=float, default=0.05,
help='weight of the feature compactness loss')
parser.add_argument('--loss_separate', type=float, default=0.05,
help='weight of the feature separateness loss')
parser.add_argument('--h', type=int, default=256,
help='height of input images')
parser.add_argument('--w', type=int, default=256, help='width of input images')
parser.add_argument('--c', type=int, default=3, help='channel of input images')
parser.add_argument('--lr', type=float, default=15e-5,
help='initial learning rate')
parser.add_argument('--method', type=str, default='pred',
help='The target task for anoamly detection')
parser.add_argument('--t_length', type=int, default=5,
help='length of the frame sequences')
parser.add_argument('--fdim', type=int, default=512,
help='channel dimension of the features')
parser.add_argument('--mdim', type=int, default=512,
help='channel dimension of the memory items')
parser.add_argument('--msize', type=int, default=10,
help='number of the memory items')
parser.add_argument('--num_workers', type=int, default=2,
help='number of workers for the train loader')
parser.add_argument('--dataset_type', type=str, default='ped2',
help='type of dataset: ped1, ped2, avenue')
parser.add_argument('--dataset_path', type=str,
default='./dataset', help='directory of data')
parser.add_argument('--exp_dir', type=str, default='log',
help='directory of log')
start_time = datetime.now()
print("Start time:", start_time.strftime("%d/%m/%Y %H:%M:%S"))
args = parser.parse_args()
print("Dataset: ", args.dataset_type)
print("Method: ", args.method)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
if args.gpus is None:
gpus = "0"
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
else:
gpus = ""
for i in range(len(args.gpus)):
gpus = gpus + args.gpus[i] + ","
os.environ["CUDA_VISIBLE_DEVICES"] = gpus[:-1]
# make sure to use cudnn for computational performance
torch.backends.cudnn.enabled = True
train_folder = args.dataset_path+"/"+args.dataset_type+"/training/frames"
# Loading dataset
print('Loading dataset...')
train_dataset = DataLoader(train_folder, transforms.Compose([
transforms.ToTensor(),
]), resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)
train_size = len(train_dataset)
train_batch = data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, drop_last=True)
print('Loading dataset is finished')
# Model setting
print('Model setting...')
assert args.method == 'pred' or args.method == 'recon', 'Wrong task name'
if args.method == 'pred':
from model.final_future_prediction_with_memory_spatial_sumonly_weight_ranking_top1 import *
model = convAE(args.c, args.t_length, args.msize, args.fdim, args.mdim)
else:
from model.Reconstruction import *
model = convAE(args.c, memory_size=args.msize,
feature_dim=args.fdim, key_dim=args.mdim)
params_encoder = list(model.encoder.parameters())
params_decoder = list(model.decoder.parameters())
params = params_encoder + params_decoder
optimizer = torch.optim.Adam(params, lr=args.lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
model.cuda()
print('Setting up model is finished')
print('Start training and logging into file')
# Report the training process
log_dir = os.path.join('./exp', args.dataset_type, args.method, args.exp_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
orig_stdout = sys.stdout
f = open(os.path.join(log_dir, 'log.txt'), 'w')
sys.stdout = f
loss_func_mse = nn.MSELoss(reduction='none')
loss_func_ssim = tgm.losses.SSIM(7, reduction='none')
# Training
print('Start training...')
m_items = F.normalize(torch.rand((args.msize, args.mdim),
dtype=torch.float), dim=1).cuda() # Initialize the memory items
for epoch in range(args.epochs):
labels_list = []
model.train()
start = time.time()
for j, (imgs) in enumerate(train_batch):
# plt.imshow(imgs[0].permute(1, 2, 0))
# plt.show()
imgs = Variable(imgs).cuda()
if args.method == 'pred':
last_index = (args.t_length - 1) * 3
outputs, _, _, m_items, softmax_score_query, softmax_score_memory, separateness_loss, compactness_loss = model.forward(
imgs[:, 0:last_index], m_items, True)
else:
outputs, _, _, m_items, softmax_score_query, softmax_score_memory, separateness_loss, compactness_loss = model.forward(
imgs, m_items, True)
optimizer.zero_grad()
if args.method == 'pred':
first_index = (args.t_length - 1) * 3
loss_SSIM = loss_func_ssim(outputs, imgs[:, first_index:])
loss_pixel = torch.mean(loss_SSIM)
else:
loss_SSIM = loss_func_ssim(outputs, imgs)
loss_pixel = torch.mean(loss_SSIM)
loss = loss_pixel + args.loss_compact * compactness_loss + \
args.loss_separate * separateness_loss
loss.backward(retain_graph=True)
optimizer.step()
scheduler.step()
print('----------------------------------------')
print('Epoch:', epoch+1)
if args.method == 'pred':
print('Loss: Prediction {:.6f}/ Compactness {:.6f}/ Separateness {:.6f}'.format(
loss_pixel.item(), compactness_loss.item(), separateness_loss.item()))
else:
print('Loss: Reconstruction {:.6f}/ Compactness {:.6f}/ Separateness {:.6f}'.format(
loss_pixel.item(), compactness_loss.item(), separateness_loss.item()))
print('Memory_items:')
print(m_items)
print('----------------------------------------')
prefix_output_name = args.dataset_type
if args.method == 'pred':
prefix_output_name = prefix_output_name + \
'_prediction_epoch_' + str(epoch+1) + '_'
else:
prefix_output_name = prefix_output_name + \
'_reconstruction_epoch_' + str(epoch+1) + '_'
torch.save(model, os.path.join(log_dir, prefix_output_name + 'model.pth'))
torch.save(m_items, os.path.join(log_dir, prefix_output_name + 'keys.pt'))
print('Training is finished')
# Save the model and the memory items
prefix_output_name = args.dataset_type
if args.method == 'pred':
prefix_output_name = prefix_output_name + '_prediction_'
else:
prefix_output_name = prefix_output_name + '_reconstruction_'
torch.save(model, os.path.join(log_dir, prefix_output_name + 'model.pth'))
torch.save(m_items, os.path.join(log_dir, prefix_output_name + 'keys.pt'))
sys.stdout = orig_stdout
f.close()
print('Training is finished')
end_time = datetime.now()
time_range = end_time-start_time
print('Training is taken: ', time_range)