Abnormal events detection using autoencoder (U-Net) and memory module.
Use this folder structure, copy dataset into folder ./dataset/
. For example, ./dataset/ped2/
.
- Training: Use this command, and you can freely define parameters with your own settings like
python3 Train.py --dataset_type dataset_type
Example for avenue
:
python3 Train.py --dataset_type avenue
Need to help? Run this command:
python3 Train.py -h
- Evaluation
python3 Evaluate.py --dataset_type dataset_type --model_dir your_model.pth --m_items_dir your_m_items.pt
Example for avenue
:
python3 Evaluate.py --dataset_type avenue --model_dir ./pre_trained_model/avenue_prediction_model.pth --m_items_dir ./pre_trained_model/avenue_prediction_keys.pt
Need to help? Run this command:
python3 Evaluate.py -h
- Run demo app
python3 app.py --method pred --dataset_type dataset_type
Example for avenue
:
python3 app.py --method pred --dataset_type avenue
- [fully pre-trained]: Please download and place it into root folder of project